检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王松[1] 李红星[2] WANG Song LI Hong-xing(Beijing Key Laboratory of Information Services Engineering, Beijing Union University, Beijing 100101, China College of Automation, Beijing Union University, Beijing 100101, China)
机构地区:[1]北京联合大学北京市信息服务工程重点实验室,北京100101 [2]北京联合大学自动化学院,北京100101
出 处:《北京联合大学学报》2017年第1期87-92,共6页Journal of Beijing Union University
基 金:北京市自然科学基金资助项目(4142018)
摘 要:针对人工蜂群算法收敛速度缓慢、容易陷入局部最优解的问题,将改进的遗传进化机制与蜂群算法相融合,提出了一种遗传蜂群算法。通过引入遗传算法的交叉变异算子,有效地增加了食物源的多样性,减小陷入局部最优的可能;采用了自适应选择食物源的机制,使蜂群在中后期更好地搜索到最优食物源所在区域,进而提高了全局搜索效率;此外,提出了在侦察蜂阶段的局部搜索策略,提高了算法进化的收敛速度。将遗传蜂群算法应用于TSP中,通过对TSBLIB中几个典型问题的实验,结果表明,提出的遗传蜂群算法具有很强的全局优化能力,在求解TSP问题中精度高,收敛速度快,且是一种解决TSP问题的有效方法。In order to overcome the problem of the slow convergence and falling into local optimum easily in artificial bee colony algorithm, a new algorithm called genetic bee colony algorithm is proposed, and it is a fusion of the improved genetic evolution mechanism and artificial bee colony algorithm. Artificial bee colony algorithm can increase the diversity of food source by leading into the crossover and mutation operator of genetic algorithm, and it can reduce the possibility of falling into local optimum. The mechanism of adaptive selection for bees is used in this paper. Bees can search near the best food source by introducing the strategy of adaptive selection in the middle and late stage, thus the efficiency of the global search is better improved. Furthermore, a local searching strategy is proposed to improve the convergence rate of evolution at the scout stage. The genetic bee colony algorithm is applied to TSP, and experimental results by several typical problems of the TSPLIB show that the genetic bee colony algorithm has a strong ability of global optimization. In the process of solving TSP, the genetic bee colony algorithm has high precision and fast convergence speed, and it is a more effective method for solving TSP problem.
关 键 词:人工蜂群算法 交叉变异算子 自适应选择 局部搜索策略 TSP
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.32