检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖东辉[1,2] 马巍[1] 赵淑萍[3] 张泽[1] 冯文杰[1] 张莲海[1]
机构地区:[1]中国科学院西北生态环境资源研究院冻土工程国家重点实验室,甘肃兰州730000 [2]中国科学院大学,北京100049 [3]南京师范大学地理科学学院,江苏南京210000
出 处:《湖南大学学报(自然科学版)》2017年第1期125-135,共11页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金重点项目(41630636);国家自然科学基金资助项目(41301070;41501072);甘肃省交通运输厅科技项目(2014-03);中科院西部之光博士项目(2013-03)~~
摘 要:在季节冻土区,土体内部孔隙水压力和水分含量受冻融循环和外部荷载的影响.通过模型试验,利用孔隙水压力传感器和水分传感器对冻融与静荷载双重作用下黄土内部的孔隙水压力和水分含量进行监测,得到不同深度处孔隙水压力和水分含量的变化过程.结合静荷载的应力场,进一步分析孔隙水压力和水分含量的空间变化规律.试验结果表明:在冻融与静荷载双重作用的初期,土体内部孔隙水压力快速增大;之后,孔隙水压力开始随温度呈周期性变化.在一个冻融周期内,土体内部孔隙水压力和水分含量都随温度的升高而增大,随温度的降低而减小,而且孔隙水压力和水分都随温度的变化而表现出滞后性.随着冻融循环次数的增加,孔隙水压力在荷载下方和两侧形成三个集中区;水分则在荷载下方形成高含水量区,在荷载两侧形成低含水量区.通过对静荷载产生的应力场进行分析发现,土体内部孔隙水压力和水分场的空间分布与静荷载产生的应力场有密切关系.In the seasonal frozen regions, the pore water pressures and water contents in soil are influenced by freeze-thaw cycles and external loads. In the model test, the sensors of pore water pressure and water content were used to measure the variations of pore water pressures and water contents of the loess under the freeze-thaw cycles and static load, and the changing process of pore water pressures and water contents at different depths of soil was obtained. The relationship between static stress and pore water pressures in the space was then examined. It is found that the pore water pressures of soil increased rapidly at the beginning of freeze-thaw and static load actions; and the pore water pressure then changed periodically with the temperature. In a freeze-thaw cycle, soil pore water pressure and moisture content increased with the increase of temperature, and decreased with the decrease of temperature. In addition, the pore- water pressure and moisture had hysteretic quality with the changing of temperature. Moreover, three concentrated areas of pore water pressure from the longitudinal section with the increasing number of freeze-thaw cycles were observed, one was directly below the loading position, and the other two were located between the edge of loading area and test chamber. Meanwhile, a high water content area below the static load and low water content areas on both sides of the static load were also found. Under the static load, the distribution of pore water pressure resembled the stress field calculated by the corner-points method. It is also considered that the present of these concentrated areas was related to the stress field of soils produced by the static load.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69