检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李丽清[1,2] 杜福贻 贾仁安[3] 刘巧艳[2] 卢祖洵[2] LI Li-qing DU Fu-yi JIA Ren-an LIU Qiao-yan LU Zu-xun(School of Economics and Management, Jiangxi Science and Technology Normal University, Nanchang 330031 China Tongji Medical College, Huazhang University of Science and Technology, Wuhan 430030, China Management School, Nanchang University, Nanchang 330031, China)
机构地区:[1]江西科技师范大学经济管理学院,江西南昌330031 [2]华中科技大学同济医学院公共卫生学院,湖北武汉430030 [3]南昌大学管理学院,江西南昌330031
出 处:《数学的实践与认识》2016年第24期115-126,共12页Mathematics in Practice and Theory
基 金:2014国家自然科学基金(71473110);2015中国博士后特别资助项目(2015T80811)
摘 要:控制卫生费用的不合理增长是卫生政策的重要选题,影响卫生费用的因素众多复杂,且相互作用,探索科学的预测方法对卫生费用未来增长趋势的准确预测至关重要.目前常用的定量预测方法有回归模型、因子分析、时间序列模型、组合预测模型、趋势外推法、灰色预测模型、人工神经网络模型等,这些方法大多都是用数学模型对未来变化趋势进行预测,对系统整体环境的变化及其各种因素的影响考虑不够充分,研究目标单一,且对数据的时间序列长度要求严格.为克服常规预测方法的不足,结合卫生费用复杂性、动态性、敏感性等特征,从系统工程的角度,充分考虑到社会人口、经济水平、卫生资源、国家政策、卫生费用结构方面的因素等对卫生费用的影响及其交互作用,试着从系统工程的角度,运用系统动力学建模技术,创新性地提出"主计算枝+影响枝"的系统动力学建模方法,建立卫生总费用、人口数量、GDP、老龄化、卫生技术人员数量、政府卫生支出、药品费用等七个系统动力学流率入树模型.基于2001 2013年的历史数据,主计算枝流率变量方程的建立主要用到乘积式、表函数,影响枝各变量方程的建立主要运用表函数、延迟函数、阶跃函数、选择函数等,以2001年为初始年,仿真时间为2001 2025年,其中2001 2014年为历史时间,2015 2025年为预测时间,仿真步长为年.借助Vensim仿真软件,实现卫生费用复杂系统内部结构与行为特征的可视化模拟,将2002 2014的模拟结果与历史结果相比,卫生费用预测结果的平均吻合率达97.8%.定量预测结果及其决定因素的量化测量,将是制订国家宏观卫生政策的重要依据.Control the unreasonable growth of health expenditure is an important topic of health policy. Health expenditure is influenced by many complicated factors. To predict the trend of growth of health expenditure is important. Regression model, factor analysis, time series model, neural network model were used to forecast the trend of health expenditure. These mathematical models only considered single determinant, and were limited by time series data length. To overcome the shortage of these forecasting methods, we combined with the feature of health expenditure of complexity, dynamic, sensitivity, etc, from the perspec- tive of system engineering, fully considering the impact of the population, economic level, health resources, national policy and health fee structure on the cost of healthcare, as well as interactions between them. A new system dynamics modeling method called "the main calculation branch + influencing branch" was created. The total health expenses, population, GDP, aging, quantity of health personnel, the government expenditure on health and drug expenses were combined into the tree model. Based on the historical data of 2001-2013, we established the branch of each variable equation using the table function, delay function and step function, selection, function, and etc. To predict the health expenditure from 2015 to 2025, the simulation step size was for years. With Vensim simulation software, the simulation results of 2002-2014 was compared with the historical results, the self-agreement averaging 97.8% of results. Quantitative prediction results will be the important basis to make the national macro health policy.
分 类 号:N941.3[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38