非均质表面估计模型在尘肺病发病估算中的应用  

Application of means of surfaces with nonhomogeneity in estimating the incidence of pneumoconiosis

在线阅读下载全文

作  者:赵春香[1] 张杰[2] 郝世宾 张健[2] 徐萍[2] 曹玉雯[1] 赵俊琴[1] 李建国[1] 

机构地区:[1]河北省疾病预防控制中心,石家庄050021 [2]廊坊市疾病预防控制中心

出  处:《中华劳动卫生职业病杂志》2017年第1期41-43,共3页Chinese Journal of Industrial Hygiene and Occupational Diseases

基  金:河北省卫生厅医学科学研究重点课题:空间抽样技术在职业病估算中的应用研究(20130086)

摘  要:目的探讨采用非均质表面估计模型(MsN)估算尘肺病发病情况。方法基于主成分分析法,将河北省所有县(区)按尘肺病危害程度分为3层,利用2010年县(区)尘肺病发病数据,应用MSN模型估算尘肺发病率和发病数。结果综合MSN模型应用要求、主成分分析结果、专家经验,将河北省172个县(区)分为职业病危害较轻、中等、较重3层,各层县(区)数分别为74、61、49个,分别从各层中选取样本县12、12、25个,估算河北省尘肺病发病人数为2105人,发病率为261.5/10万,估算标准误为389.9/10万。结论MSN模型为推测尘肺病例数量提供了一种新的思路和科学方法。Objective To investigate the value of means of surfaces with nonhomogeneity (MSN) in estimating the incidence of pneumoconiosis. Methods Based on the principal component analysis, all counties (districts) of Hebei Province, China, were divided into three categories according to the degree of pneumoconiosis hazards and the MSN model was used to estimate the incidence rate of pneumoeoniosis and the number of pneumoeoniosis cases using the data of the incidence of pneumoconiosis in 2010. Results With reference to the application requirements of the MSN model, results of the principal component analysis, and expert experience, the 172 counties (districts) in Hebei Province were divided into three categories with mild, moderate, and severe pneumoeoniosis hazards. There were 74, 61, and 49 counties in the above categories, respectively, and 12, 12, and 25 counties were selected from them, respectively. The estimated number of pneumoconiosis cases in Hebei Province was 2105, and the incidence rate was 261.5 per hundred thousand, with a standard error of estimation of 389.9 per hundred thousand. Conclusion The MSN model provides a new thought and method for estimating the number of pneumoconiosis cases.

关 键 词:非均质表面模型 尘肺 预测 

分 类 号:R135.2[医药卫生—劳动卫生]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象