检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《环境科学与技术》2016年第12期139-143,共5页Environmental Science & Technology
基 金:国家自然科学基金项目(61262048)
摘 要:基于MATLAB智能工具箱对某300 MW电站锅炉进行了燃烧优化建模,首先利用BP(back propagation)神经网络建立了锅炉热效率和NO_x排放模型,用以预测锅炉热效率和NO_x排放特性,锅炉热效率预测的平均相对误差为0.14%,NO_x排放量的平均相对误差为1.79%,表明模型具有良好的准确性和泛化能力。基于该燃烧特性预测模型,借助于改进的遗传算法(genetic algorithm,GA)优化模型,在锅炉热效率可接受的某一范围内寻求NO_x排放的最优解,实现锅炉低NO_x排放燃烧优化,对实际的电站锅炉燃烧具有一定的指导意义。MATLAB artificial intelligence toolbox was used to establish model to optimized combustion of a 300 MW utility boiler,firstly,BP(Back Propagation) neural network was used to establish boiler thermal efficiency and NO_x emission model to predict boiler thermal efficiency and NO_x emission,the average relative error of boiler thermal efficiency is 0.14%,and the average relative error of NO_x emissions is 1.79%,indicating that the model has good accuracy and generalization ability. With the aid of the improved genetic algorithm(GA) optimization model,to seek the optimal solution of NO_x emissions in a certain acceptable range of the boiler thermal efficiency,achieve low NO_x emission combustion optimization.The data has a certain guiding significance for the actual utility boiler combustion.
分 类 号:X701.7[环境科学与工程—环境工程] K383[历史地理—历史学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15