一种约束的改进可能性C均值聚类方法研究  被引量:1

A constrained improved possibilistic C-means clustering method

在线阅读下载全文

作  者:肖振球[1] 曾文华[2] 

机构地区:[1]嘉应学院计算机学院,广东梅州514015 [2]厦门大学软件学院,福建厦门361005

出  处:《甘肃农业大学学报》2016年第6期149-154,共6页Journal of Gansu Agricultural University

基  金:国家自然科学基金面上项目(41172028);国家自然科学基金青年科学基金项目(61403164)

摘  要:【目的】针对改进的可能性C均值聚类方法(IPCM)运算效率低,难以处理复杂数据结构的问题,提出了一种约束的改进可能性C均值聚类方法(CIPCM).【方法】CIPCM方法采用多项式核将特征向量映射到一个隐性特征空间,便于处理复杂的数据结构;引入两个成对约束集合,降低聚类迭代次数,提高运算效率和抗干扰能力.实验采用国际公认的UCI公共测试数据集,并用错分率指标评测了目标分类性能.【结果】CIPCM方法的聚类错分率低,对噪声的鲁棒性强.【结论】CIPCM运算效率比高于改进可能性C均值聚类方法.[Objective] To solve the problem that improved possibilistic C-means method has low com- putational efficiency and is hard to deal with complex data structures. [Method] A constrained improved possibilistic C-means method was proposed. The new method used polynomial kernel to map the feature vector to an implicit space,in order to easily deal with complex data structures and introduced two pairwise constrain set to reduce the number of iteration in the process of data clustering to improve the computation- al efficiency and anti-interference ability. [Result] The experiment was implemented on a well-known pub- lic testing dataset called UCI,and used misclassification rate to evaluate the performance of object classifi- cation. The results showed that the new method had low misclassification rate and strong robustness to noise. [Conclusion] The computational efficiency of the new method is higher than that of the improved possibilistic C-means clustering method.

关 键 词:聚类 C均值 模糊C均值 可能性C均值 改进的可能性C均值 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象