属性拓扑关联规则发现  被引量:5

Association Rules Detecting Based on Attribute Topology

在线阅读下载全文

作  者:张涛[1] 魏昕宇 

机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004

出  处:《小型微型计算机系统》2017年第3期548-552,共5页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61273019)资助;河北省自然科学基金项目(F2015203013)资助;教育部人文社会科学研究项目(14YJC740038)资助;河北省社会科学基金项目(HB14YY005)资助

摘  要:在形式概念分析领域,属性拓扑理论提供了简洁,明确,可视化的概念计算的方法.然而,概念要求属性与对象间形成充要的双向映射关系,这一要求在大规模数据挖掘下往往过于严格.因此,本文以属性拓扑为基础,基于支持度和置信度的本质要求,提出一种属性拓扑关联规则发现算法,该方法首先构建频繁净化形式背景,由属性拓扑,直接发现二元频繁模式,并由BFSW子算法,计算三元及以上频繁模式,经过置信度检验,进而获得所需的关联规则.该算法弥补了传统概念计算中忽略属性间关联规则知识发现的不足,提供了发现属性对象间充分不必要关系的有效视角.In FCA, Attribute Topology provided several methods to compute formal concept. The process of AT's computing is simple, clear and visual. However,concept demands the necessary and sufficient bidirectional mapping between attributes and objects. This re- quirement is so strict especially in large scale data mining. Therefore, this paper proposed an association rules detecting algorithm based on AT and the nature requirements of Support and Confidence. UsingAT constructed by frequent pure context,this algorithm can get binary frequent patterns immediately, and compute the other patterns by BFSW algorithm. After that, the association rules can be computed by confidence test. This algorithm made up the drawback of losing sight of associations among attributes in traditional concept computing,provided a method to discover the unnecessary and sufficient mapping between attributes and objects.

关 键 词:属性拓扑 形式概念分析 关联规则 频繁模式 层级式模式发现算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象