基于M/G/1排队模型的公交停靠站泊位数研究  被引量:4

Research of Bus Stop Berth Number Based on M/G/1 Queuing Model

在线阅读下载全文

作  者:刘媛[1] 

机构地区:[1]西南交通大学交通运输与物流学院,成都610031

出  处:《交通运输工程与信息学报》2017年第1期131-136,共6页Journal of Transportation Engineering and Information

基  金:西南交通大学研究生创新实验实践项目(YC201507106)

摘  要:公交泊位数的合理设计不仅能够提高道路通行能力、减少交通拥堵,还可以节约建设成本。传统模型把公交车辆的到达和服务均设为泊松分布,与实际的交通状况相差较大。本文假设公交车辆到达服从泊松分布,停靠时间服从一般分布,将公交停靠站抽象为一个M/G/1的排队系统,考虑了车辆在公交站台的停靠时间的变异系数较大,并不服从泊松分布的情况。运用一般分布来代替泊松分布,通过对排队系统相关数值指标的计算来推算公交停靠站的设计泊位数。作者对成都市西南交大的公交站泊位数进行了设计,将计算结果与现场调查的实际结果进行对比,发现该公交站现有泊位数不足,应增加1个泊位数才能满足现有的公交停靠需求。并将该模型与现有的M/M/1和M/M/N模型进行比较,认为该模型更能反映实际的交通状况,计算结果更可信。Reasonable bus stop berth design can not only improve the road capacity and reduce traffic congestion, but also save construction costs. Arrival and service of the buses are set to obey Poisson distribution in tradition, but this is quite different from the actual traffic situation. This study assumed that the arrival ofbuses obeys Poisson distribution, and the dwell time obeys the general distribution. In this research, the bus stop was abstracted as a queuing system of M / G / 1, considering the variation coefficient of the vehicle park time was large, and it did not obey Poisson distribution. So, the study used the general distribution instead of Poisson distribution and to calculate the bus stop berths by calculating the correlation value of the queuing system relative metric. The bus stop berths of Southwest Jiaotong University in Chengdu was designed. By contrasting the calculated results with the actual results of field survey, this study found that the existing bus station berth was insufficient, and it should increase one berth to meet the current dock demand. Finally, compared the model with the existing M / M / 1 and M / M / N models, the result showed that the model proposed reflected the actual traffic situation better and the result was more credible

关 键 词:泊位数 公交车站 排队论 停靠时间 到达分布 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象