复杂地表区震检联合组合组内距量化分析  被引量:1

Matching receiver-and source-arrays for seismic acquisition in complex surface areas

在线阅读下载全文

作  者:何京国[1] 张志林[1] 刘斌[1] 段卫星[1] 潘家智[1] 

机构地区:[1]中国石化石油工程地球物理公司胜利分公司,山东东营257086

出  处:《石油地球物理勘探》2016年第6期1055-1061,1047,共7页Oil Geophysical Prospecting

摘  要:复杂地表区的干扰波类型多、能量强,对采集数据的影响大。采用单点采集,或者单一的检波器组合或震源组合采集到的地震记录中的面波、多次折射、侧面波等强短波长噪声几乎淹没了有效信息,导致信噪比很低;而组合虽能压制干扰,提高地震资料信噪比,但会滤掉高频成分,使有效波波形发生畸变。为了确定最佳震检联合组合方式,以本文从改进传统组合理论公式入手,拟合出多种震检联合压噪响应曲线,对比导出震检联合组合最佳匹配量化公式,并通过相关软件进行了模拟验证,在实际应用中取得了较好的效果。There are different types of strong interference in seismic acquisition in complex surface areas, which affect seismic data quality. Single-point acquisition, that is point-receiver or/and point-source acquisition, in complex surface areas always generates strong short-wavelength noise such as ground roll, multiple refraction, sideswipe, and so on. The noise almost submerges seismic signals and makes data signal-to-noise ratio (SNR) very low. Receiver array or/and source array acquisition can suppress this kind of interference and improve data SNR, but it filters out high frequency components and causes waveform distortion. To solve this problem, we should consider the receiver array and source array at the same time. Therefore we propose an ideal of receiver-array and source-array matching. In order to determine optimal matching receiver- and source-arrays, we fit out different response curves for noise suppression based on a new theory formula rather than conventional theory formula. We finally extract optimal matching quantitative formula for a pair of optimal matching receiver- and source-arrays. The proposed approach is not only tested and verified by a software system, but also achieves good results in the practice. © 2016, Editorial Department OIL GEOPHYSICAL PROSPECTING. All right reserved.

关 键 词:干扰 组合 震检联合 响应曲线 最佳匹配 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象