检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李军[1] 邓红平[1] LI Jun DENG Hongping(Guangdong Key Laboratory of Intelligent Transportation Systems, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China)
机构地区:[1]中山大学广东省智能交通系统重点实验室,广东广州510006
出 处:《重庆交通大学学报(自然科学版)》2016年第6期109-114,共6页Journal of Chongqing Jiaotong University(Natural Science)
基 金:国家自然科学基金项目(51178475)
摘 要:为得到体现公交乘客出行时空规律的数据,采用基于出行链方法推导出公共汽车乘客的下车站点;建立了描述单个乘客多天出行的完整数据框架;根据乘客参加不同活动所产生的出行时空特征定义了3类出行:通勤类出行、普通类出行和随机类出行,将出行频次与出发时间的标准差作为分类标准对公交乘客出行进行分类。研究表明:39.1%的乘客具有普通类或通勤类出行,生成总客流的76.4%;60.9%的乘客只具有随机类出行,生成总客流的23.6%。通过对乘客出行的分类研究可以更好地掌握乘客公交出行的规律和需求。To obtain the data of the spatial and temporal patterns of public transit passengers,the first step was to infer the alighting stop for each cardholder based on trip chain method,and then a full data framework was established for describing each passenger’s travel behavior in several days. Meanwhile,three types of travel were defined derived from passenger’s different types of activity in terms of temporal-spatial characteristics,including the commuting travel type,the ordinary type and the random travel type. Finally,each passenger’s travel was classified into the above three types according to travel frequency and the standard deviation of departure time. The result of classification shows that about 39. 1% of total passengers have the commuting type or ordinary type and these passengers generate about 76. 4% of total passenger flow; about 60. 9%of total passengers only have random travel type and these passengers only generate about 23. 6% of total passenger flow. It is possible to obtain the public transit passenger’s travel pattern and demand at a much more detail level by classifying each passenger’s multiday travel behavior.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222