基于无监督聚类算法的风电场高压电缆局放脉冲识别  被引量:2

Partial Discharge Pulse Recognition for High Voltage Cable in Wind Farm Based on Unsupervised Clustering Algorithm

在线阅读下载全文

作  者:任岩[1,2,3] 万元 龚传利[2] 

机构地区:[1]中国长江三峡集团公司,湖北宜昌443002 [2]中国水利水电科学研究院,北京100038 [3]华北水利水电大学,河南郑州450045 [4]五凌电力有限公司,湖南长沙410004

出  处:《水电能源科学》2017年第1期209-211,76,共4页Water Resources and Power

基  金:中国长江三峡集团公司三峡新能源公司资助项目

摘  要:针对风电场高压电缆局部放电在线监测中脉冲型干扰难以抑制的技术难题,分析了风电场高压电缆局部放电脉冲及各类干扰脉冲的分布特征,并在此基础上,提出了基于无监督聚类算法的风电场局部放电脉冲识别策略。首先对现场多个工频周期的原始脉冲群依次进行自适应、自学习聚类,然后根据聚类结果计算不同脉冲群的三维分布谱图,最后根据不同类脉冲的分布差异有效地识别出局部放电脉冲。该策略不需要脉冲样本知识,面向复杂的电磁干扰环境具有很强的适应性与实用性,某风电场工程应用实践证明了该策略能准确地实现脉冲识别。Aiming at the technical problem that it is difficult to suppress the pulse interference during partial dis- charge online monitoring of high voltage cable in wind farm, the distribution characteristics of the partial discharge pulses and all kinds of interference pulses were analyzed. And then the partial discharge pulse recognition strategy was put for- ward based on unsupervised clustering algorithm. Firstly, the selLlearning and adaptive clustering method was used to di- vide into all the pulses in the original signal into several pulses classes. Secondly, three-dimensional pattern chart of each pulse class was calculated. Thirdly, three-dimensional pattern chart of each pulse class was used to effectively identify PD pulses according to the difference among the distribution of different kinds of pulses. The strategy does not need sample knowledge of pulses and has strong practicability and adaptability in complicated electromagnetic interference environment. The application in a wind farm project proves that the proposed pulse recognition strategy has good practicability.

关 键 词:风电场 高压电缆 局部放电 在线监测 脉冲型干扰 脉冲识别 

分 类 号:TM855[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象