Statistical analysis of recombination properties of the boronoxygen defect in p-type Czochralski silicon  

Statistical analysis of recombination properties of the boronoxygen defect in p-type Czochralski silicon

在线阅读下载全文

作  者:Nitin NAMPALLI Tsun Hang FUNG Stuart WENHAM Brett HALLAM Malcolm ABBOTT 

机构地区:[1]School of Photovoltaic and Renewable Energy Engineering, Universityof New South Wales, Sydney, NSW 2052, Australia

出  处:《Frontiers in Energy》2017年第1期4-22,共19页能源前沿(英文版)

摘  要:This paper presents the application of lifetime spectroscopy to the study of carrier-induced degradation ascribed to the boron-oxygen (BO) defect. Specifically, a large data set of p-type silicon samples is used to investigate two important aspects of carrier lifetime analysis: ① the methods used to extract the recombination lifetime associated with the defect and ② the underlying assumption that cartier injection does not affect lifetime components unrelated to the defect. The results demonstrate that the capture cross section ratio associated with the donor level of the BO defect (kl) vary widely depending on the specific method used to extract the defect-specific recombination lifetime. For the data set studied here, it was also found that illumination used to form the defect caused minor, but statistically significant changes in the surface passivation used. This violation of the fundamental assumption could be accounted for by applying appropriate curve fitting methods, resulting in an improved estimate of k1 (11.90±0.45) for the fully formed BO defect when modeled using the donor level alone. Illumination also appeared to cause a minor, apparently injectionindependent change in lifetime that could not be attributed to the donor level of the BO defect alone and is likely related to the acceptor level of the BO defect. While specific to the BO defect, this study has implications for the use of lifetime spectroscopy to study other carrier induced defects. Finally, we demonstrate the use of a unit-less regression goodness-of-fit metric for lifetime data that is easy to interpret and accounts for repeatability error.This paper presents the application of lifetime spectroscopy to the study of carrier-induced degradation ascribed to the boron-oxygen (BO) defect. Specifically, a large data set of p-type silicon samples is used to investigate two important aspects of carrier lifetime analysis: ① the methods used to extract the recombination lifetime associated with the defect and ② the underlying assumption that cartier injection does not affect lifetime components unrelated to the defect. The results demonstrate that the capture cross section ratio associated with the donor level of the BO defect (kl) vary widely depending on the specific method used to extract the defect-specific recombination lifetime. For the data set studied here, it was also found that illumination used to form the defect caused minor, but statistically significant changes in the surface passivation used. This violation of the fundamental assumption could be accounted for by applying appropriate curve fitting methods, resulting in an improved estimate of k1 (11.90±0.45) for the fully formed BO defect when modeled using the donor level alone. Illumination also appeared to cause a minor, apparently injectionindependent change in lifetime that could not be attributed to the donor level of the BO defect alone and is likely related to the acceptor level of the BO defect. While specific to the BO defect, this study has implications for the use of lifetime spectroscopy to study other carrier induced defects. Finally, we demonstrate the use of a unit-less regression goodness-of-fit metric for lifetime data that is easy to interpret and accounts for repeatability error.

关 键 词:Czochralski silicon boron-oxygen defect injection dependent lifetime spectroscopy goodness-of-fit repeatability error 

分 类 号:TN304.25[电子电信—物理电子学] TM262[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象