Numerical research on evolvement of submarine sand waves in the Northern South China Sea  被引量:4

Numerical research on evolvement of submarine sand waves in the Northern South China Sea

在线阅读下载全文

作  者:Qikun ZHOU Guanghai HU Yongfu SUN Xiaohui LIU Yupeng SONG Lifeng DONG Changming DONG 

机构地区:[1]First Institute of Oceanography, SOA, Qingdao 266061, China [2]State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, SOA, Hangzhou 310012, China [3]School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China [4]Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095, USA

出  处:《Frontiers of Earth Science》2017年第1期35-45,共11页地球科学前沿(英文版)

基  金:Acknowledgements This study is supported by the Marine Public Welfare Industry Program of State Oceanic Administration (Grant No. 201005005). Yan LI from the First Institute of Oceanography, SOA, is appreciated for her work on partial calculations. Dr. Yu LIU, School of Marine Sciences, Nanjing University of Information Science & Technology, is appreciated for his valuable help in coordinating the running of ROMS. Thanks to Philipp Wu from the University of California, Berkeley for his help in proofreading the manuscript. CD appreciates the support from the National Natural Science Foundation of China (Grant Nos. 41476022, 41490643, and 91128204), Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (2013r121and 2014r072), Program for Innovation Research and Entrepreneurship team in Jiangsu Province, National Basic Research Program of China (No. 2014CB745000), and National Programme on Global Change and Air-Sea Interaction (No. GASI- 03-IPOVAI-05).

摘  要:Submarine sand waves, vital to seabed stability, are an important consideration for oceanic engineering projects such as oil pipe lines and submarine cables. The properties of surface sediment and the evolvement of submarine sand waves in a specified area in the South China Sea are studied using both a hydrological model and field observational data. The bottom flow field data between 2010 and 2011 in the study area are simulated by the Regional Ocean Model System (ROMS). The migration of submarine sand waves is calculated using Rubin's formula along with typhoon data and bottom flow field data, which allows for the analysis of sand wave response under the influence of typhoons. The migration direction calculated by Rubin's formula and bottom flow are very similar to collected data. The migration distance of different positions is between 0.0 m and 21.8 m, which reciprocates cumulatively. This shows that Rubin's formula can predict the progress of submarine sand waves with the bottom flow simulated by ROMS. The migration distances of 2 sites in the study area are 2.0 m and 2.9 m during the typhoon "Fanapi". The proportion of the calculated migration distance by the typhoon is 9.17% and 26.36% of the annual migration distance, respectively, which proves that the typhoon can make a significant impact on submarine sand waves.Submarine sand waves, vital to seabed stability, are an important consideration for oceanic engineering projects such as oil pipe lines and submarine cables. The properties of surface sediment and the evolvement of submarine sand waves in a specified area in the South China Sea are studied using both a hydrological model and field observational data. The bottom flow field data between 2010 and 2011 in the study area are simulated by the Regional Ocean Model System (ROMS). The migration of submarine sand waves is calculated using Rubin's formula along with typhoon data and bottom flow field data, which allows for the analysis of sand wave response under the influence of typhoons. The migration direction calculated by Rubin's formula and bottom flow are very similar to collected data. The migration distance of different positions is between 0.0 m and 21.8 m, which reciprocates cumulatively. This shows that Rubin's formula can predict the progress of submarine sand waves with the bottom flow simulated by ROMS. The migration distances of 2 sites in the study area are 2.0 m and 2.9 m during the typhoon "Fanapi". The proportion of the calculated migration distance by the typhoon is 9.17% and 26.36% of the annual migration distance, respectively, which proves that the typhoon can make a significant impact on submarine sand waves.

关 键 词:submarine sand waves MIGRATION ROMS Rubin's formula TYPHOON 

分 类 号:P737.23[天文地球—海洋地质] P435[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象