改进灰色时序模型的石化装备齿轮系统磨损预测研究  被引量:4

Research of Wear Prediction of Gear System of Petrochemical Equipment based on Improved Grey Time Series Combination Model

在线阅读下载全文

作  者:何照荣[1] 孙志伟[1] 宣征南[1] 段志宏[2] 

机构地区:[1]广东石油化工学院机电工程学院,广东茂名525000 [2]广东石油化工学院广东省石化装备故障诊断重点实验室,广东茂名525000

出  处:《机械传动》2017年第1期49-53,81,共6页Journal of Mechanical Transmission

基  金:茂名市科技计划项目(201327;201612);广东省石化装备故障诊断重点实验室开放课题(GDUPTKLAB201607)

摘  要:重载齿轮系统在大型石化工业生产装置中应用广泛,由于石化装置长周期运行的特点,且装置运行工况恶劣,齿轮系统磨损严重,对其磨损状态的监测和预测分析可及时掌握齿轮系统运行状态,确保装置的安全可靠运行。灰色系统模型可预测齿轮系统磨损量的变化,而时间序列模型可对磨损量预测数据的残差序列进行分析,将两者联立建立新的预测模型,达到综合调整和修正预测数据的目的。然后,改进灰色模型权重系数μ,以预测值和原始值的离差平方和作为考察指标,确定最佳权重系数μ_(opt),提高灰色时序预测精度。通过某石化企业在用装置的重载齿轮系统铁谱监测数据作为样本,检验改进灰色时序预测模型效果,结果表明该预测模型的效果优于传统灰色时序预测模型。The heavy load gear system is widely used in large petrochemical industrial equipment. Because of the bad running conditions, the wear condition of the gear system is severe. According to the wear status of mo- nitoring and forecasting analysis, the running condition of the gear system can he grasped, and to ensure the safe and reliable operation of the industrial units. The changing tendency of the wear quantity of the gear system can be represented by the grey prediction method, and the residual series of the predicted value can be analyzed by the time series method. The two kinds of methods can be combined to adjust and correct the predicted value. Then, the weight coefficient μ of the grey prediction model is improved. The sum of deviation square of the pre- dicted value and the original value are set for investigation target to determine the optimum weight coefficient μopt, and the predicted precision is improved. The quantitative values of ferrography of the using heavy load gear system is analyzed as an example to test the effect of the improved grey time series combination model. The result shows that the improved grey time series combination model is superior to the traditional one.

关 键 词:油液分析 灰色时序模型 齿轮磨损 铁谱 

分 类 号:TE65[石油与天然气工程—油气加工工程] TH132.41[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象