检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家卫生计生委卫生发展研究中心,北京100191
出 处:《中国卫生经济》2017年第3期59-62,共4页Chinese Health Economics
摘 要:目的:通过引入病例临床复杂性水平计算原理进行疾病诊断相关分组(DRG)细分组方法的探讨研究,为探索符合我国国情的细分组分组方法提供借鉴参考。方法:由临床专家对合并症与并发症临床复杂性水平进行评分,应用病例临床复杂性水平计算模型计算每例病例的临床复杂性水平值,采用CART模型完成DRG细分组的划分,并对细分组结果进行秩和检验。结果:9个女性生殖系统手术治疗类DRG基本组被划分成18个DRG细分组,经检验各基本组内不同DRG组间住院费用和住院天数差异均有统计学意义。结论:病例临床复杂性水平计算方法的应用提高了DRG细分组结果的准确性;病案质量和编码的统一是保证分组结果合理的关键因素。Objective: To explore grouping methods of subdividing adjacent diagnosis related groups(DRGs) by inlroducing patient clinical complexity level(PCCL) principle and provide references for exploring DRG grouping method in line with context in China. Methods: Clinical complexity level of each complication was assigned by clinicians. PCCL model was selected to calculate the scores of clinical complexity cases. Each adjacent DRG was subdivided into DRG groups by classification and regression trees(CART) model. The rank-sum test was applied to test the statistical significances of the grouping results. Results: 9 surgical adjacent DRGs were subdivided into 18 DRG groups. There were statistical significanees in the differences of hospitalization expenses anti length of stay anmng different DRG groups in each adjacent group. Conclusion: PCCL model showed high performanee in DRG subdivision. The unification of the quality of medical records and coding were the key factors to ensure the reasonable grouping resuhs.
关 键 词:疾病诊断相关分组 女性生殖系统 病例临床复杂性水平计算 分类和回归树模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15