检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116 [2]中国科学院,计算技术研究所,智能信息处理重点实验室,北京100190 [3]中国科学院大学,北京100049 [4]徐州医科大学医学信息学院,江苏徐州221004
出 处:《软件学报》2017年第2期292-309,共18页Journal of Software
基 金:国家重点基础研究发展计划(973)(2013CB329502);国家自然科学基金(61035003);国家高技术研究发展计划(863)(2012AA011003);国家科技支撑计划(2012BA107B02);江苏省自然科学基金(BK20160276)~~
摘 要:针对弱匹配多模态数据的相关性建模问题,提出了一种弱匹配概率典型相关性分析模型(semi-paired probabilistic CCA,简称Semi PCCA).Semi PCCA模型关注于各模态内部的全局结构,模型参数的估计受到了未匹配样本的影响,而未匹配样本则揭示了各模态样本空间的全局结构.在人工弱匹配多模态数据集上的实验结果表明,Semi PCCA可以有效地解决传统CCA(canonical correlation analysis)和PCCA(probabilistic CCA)在匹配样本不足的情况下出现的过拟合问题,取得了较好的效果.提出了一种基于Semi PCCA的图像自动标注方法.该方法基于关联建模的思想,同时使用标注图像及其关键词和未标注图像学习视觉模态和文本模态之间的关联,从而能够更准确地对未知图像进行标注.Canonical correlation analysis(CCA) is a statistical analysis tool for analyzing the correlation between two sets of random variables. CCA requires the data be rigorously paired or one-to-one correspondence among different views due to its correlation definition. However, such requirement is usually not satisfied in real-world applications due to various reasons. Often, only a few paired and a lot of unpaired multi-view data are given, because unpaired multi-view data are relatively easier to be collected and pairing them is difficult, time consuming and even expensive. Such data is referred as semi-paired multi-view data. When facing semi-paired multi-view data, CCA usually performs poorly. To tackle this problem, a semi-paired variant of CCA, named Semi PCCA, is proposed based on the probabilistic model for CCA. The actual meaning of "semi-" in Semi PCCA is "semi-paired" rather than "semi-supervised" as in popular semi-supervised learning literature. The estimation of Semi PCCA model parameters is affected by the unpaired multi-view data which reveal the global structure within each modality. By using artificially generated semi-paired multi-view data sets, the experiment shows that Semi PCCA effectively overcome the over-fitting problem of traditional CCA and PCCA(probabilistic CCA) under the condition of insufficient paired multi-view data and performs better than the original CCA and PCCA. In addition, an automatic image annotation method based on the Semi PCCA is presented. Through estimating the relevance between images and words by using the labelled and unlabeled images together, this method is shown to be more accurate than previous published methods.
关 键 词:典型相关性分析 概率典型相关性分析 弱匹配典型相关性分析 图像自动标注
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.201