Photonics-assisted compressive sampling system for wideband spectrum sensing  被引量:1

Photonics-assisted compressive sampling system for wideband spectrum sensing

在线阅读下载全文

作  者:郭强 陈明华 梁云华 陈宏伟 杨四刚 谢世钟 

机构地区:[1]Tsinghua National Laboratory for Information Science and Technology,Department of Electronic Engineering,Tsinghua University,Beijing 100084,China

出  处:《Chinese Optics Letters》2017年第1期55-60,共6页中国光学快报(英文版)

基  金:supported by the National Basic Research Program of China(No.2012CB315703);the National Natural Science Foundation of China(Nos.61271134 and 61120106001)

摘  要:Compressive sampling (CS) has attracted considerable attention in microwave and radio frequency (RF) fields in recent years. It enables the acquisition of high-frequency signals at a rate much smaller than their Nyquist rates. Combined with photonics technology, traditional CS systems can significantly enlarge their operating bandwidth, which offers great potential for spectrum sensing in cognitive radios. In this Letter, we review our recent work on photonic CS systems for wideband spectrum sensing. First, a proof-of-concept photonics-assisted CS system is demonstrated; it is capable of acquiring numerous radar pulses in an instantaneous bandwidth spanning from 500 MHz to 5 GHz with a 500-MHz analog-to-digital converter (ADC). To further reduce the acquisition bandwidth, multi-channel photonics-assisted CS systems are proposed for the first time, enabling the acquisition of multi-tone signals with frequencies up to 5 GHz by using 120-MHz ADCs. In addition, the system bandwidth is increased from 5 to 20 GHz by employing time-interleaved optical sampling.Compressive sampling (CS) has attracted considerable attention in microwave and radio frequency (RF) fields in recent years. It enables the acquisition of high-frequency signals at a rate much smaller than their Nyquist rates. Combined with photonics technology, traditional CS systems can significantly enlarge their operating bandwidth, which offers great potential for spectrum sensing in cognitive radios. In this Letter, we review our recent work on photonic CS systems for wideband spectrum sensing. First, a proof-of-concept photonics-assisted CS system is demonstrated; it is capable of acquiring numerous radar pulses in an instantaneous bandwidth spanning from 500 MHz to 5 GHz with a 500-MHz analog-to-digital converter (ADC). To further reduce the acquisition bandwidth, multi-channel photonics-assisted CS systems are proposed for the first time, enabling the acquisition of multi-tone signals with frequencies up to 5 GHz by using 120-MHz ADCs. In addition, the system bandwidth is increased from 5 to 20 GHz by employing time-interleaved optical sampling.

关 键 词:Fiber optics links and subsystems Radio frequency photonics OPTOELECTRONICS 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象