检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭垂江[1]
机构地区:[1]湖南铁路科技职业技术学院运输管理学院,湖南株洲412006
出 处:《中国铁道科学》2017年第1期138-143,共6页China Railway Science
基 金:湖南省教育厅科学研究项目(15C0908)
摘 要:以调机取送作业总时间、总入线车辆小时和总走行车辆公里加权综合值最小为优化目标,以调机的牵引辆数和访问调移作业点先后顺序为约束条件,建立树枝形货物作业点取送车作业方案的多目标优化模型;采用自然数作为解的编码序列,任意构造1个满足调移优先关系的解作为初始解,将调机牵引辆数约束转化为惩罚函数,并与目标函数式累积起来作为解的评价函数,依次运用3种邻域结构操作方法进行随机搜索,利用模拟退火算法对模型进行求解。以某铁路车站取送车作业为例对模型和算法进行验证。结果表明:所建模型符合取送车作业方案的编制要求和作业实际,模型求解算法的效率和结果满足现场需要。With minimizing the weighted comprehensive value of the total time operation for shunting locomotive's placing-in and taking-out of wagons,total wagons' preparation time,total wagons' travel kilometers as optimization objectives,regarding the capability of locomotive and the priority that the transferring operations requires between operating sites as constraints,a multi-objective optimization model for scheme of wagons' placing-in and taking-out in branch-shaped operating sites is formulated.Encoding the solutions with natural number,constructing a solution that satisfies the priority of the transferring as our initial solution,transforming the constraint of traction capability of shunting locomotive into penalty function and regarding it as evaluation function with the objective function,and executing a random local search with three methods of neighborhood structure operation successively,we solve the model with simulated annealing algorithm.A case of placing-in and taking-out wagons in a railway station is used to verify our model and algorithm.Results show that the model is consistent with the requirements of scheme for wagons' placing-in and taking-out and actual operation,and the computation efficiency and results can meet the requirements of railway operation.
关 键 词:取送车作业 装卸线布置 货物作业点 多目标优化模型 模拟退火算法
分 类 号:U292.21[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.82