苏里格气田不同沉积相建模方法及空间结构特征评价  被引量:5

Modeling of different sedimentary facies and assessments for features of spatial structures in the Sulige Gasfield

在线阅读下载全文

作  者:袁照威 强小龙 高世臣[1] 文开丰 

机构地区:[1]中国地质大学(北京),北京100083 [2]中国石油长庆油田分公司,陕西西安710000

出  处:《特种油气藏》2017年第1期32-37,共6页Special Oil & Gas Reservoirs

基  金:国家科技重大专项"大型油气田及煤层气开发"子课题"碳酸盐岩缝洞储集体测井解释与井震响应"(2016ZX05014-001)

摘  要:以苏里格气田苏10区块为例,运用基于目标的建模方法、序贯指示模拟法和多点地质统计学方法建立3种不同空间结构特征的沉积相模型,利用马尔科夫链模型表征不同类型的空间结构特征,并评价模型对数据空间结构的恢复效果。结果表明,马尔科夫链模型能够很好地再现建模结果的空间特征,评价建模效果。对比先验地质相图,多点地质统计学能够再现复杂沉积体的特征;序贯指示模拟能够表征大尺度数据的空间结构;相比前2种方法,基于目标的建模方法不能很好地表征空间结构,变化幅度较大。该研究可为苏10区块后续开发提供一定的理论依据。With the Su-10 Block in the Sulige Gasfield as an example, target-based modeling techniques have been deployed, together with sequential indicator simulation method and multi-point geological statistics to con- struct 3 models for sedimentary facies with different features of spatial structures. Markov chain model has been used to characterize spatial structure features of various types. In addition, impacts of such models on restoration of spa- tial structure of data have been analyzed. Research results show the Markov chain model can satisfactorily represent spatial features of modeling results to facilitate assessment over modeling performances. Compared with the transcen- dental geologic phase maps, the multi-point geological statistics can effectively represent features of complicated sedimentary structures. The sequential indicator simulation can effectively characterize spatial structure of large- scale data; Compared with above 2 techniques, target-based modeling method can hardly characterize spatial struc- ture with significant changes in amplitudes. Relevant research results may provide necessary theoretical supports for future development of the Su-10 Block.

关 键 词:沉积相建模 多点地质统计学 马尔科夫链模型 转移概率 苏里格气田 

分 类 号:TE122.2[石油与天然气工程—油气勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象