出 处:《Chinese Physics B》2017年第3期321-329,共9页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant Nos.91536218,11374100,10904037,10974055,11034002,and 11274114);the National Key Basic Research and Development Program of China(Grant No.2011CB921602);the Natural Science Foundation of Shanghai Municipality,China(Grant No.13ZR1412800)
摘 要:Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment.Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment.
关 键 词:laser cooling magneto-optical trapping BaF radical
分 类 号:O561[理学—原子与分子物理] TN24[理学—物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...