Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered C02 Availability  被引量:1

Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered C02 Availability

在线阅读下载全文

作  者:Marion Eisenhut Andrea Brautigam Stefan Timm Alexandra Florian Takayuki Tohge Alisdair R. Fernie Hermann Bauwe Andreas P.M. Weber 

机构地区:[1]Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Dusseldorf, Germany [2]Department of Plant Physiology, University of Rostock, Albert-Einstein-StraBe 3, 18051 Rostock, Germany [3]Department of Molecular Physiology, Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany [4]Present address: IPK Gatersleben, Network Analysis and Modeling, Corrensstrasse 3, 06466 Seeland, Germany

出  处:《Molecular Plant》2017年第1期47-61,共15页分子植物(英文版)

摘  要:The photorespiratory pathway or photorespiration is an essential process in oxygenic photosynthetic or- ganisms, which can reduce the efficiency of photosynthetic carbon assimilation and is hence frequently considered as a wasteful process. By comparing the response of the wild-type plants and mutants impaired in photorespiration to a shift in ambient C02 concentrations, we demonstrate that photorespiration also plays a beneficial role during short-term acclimation to reduced C02 availability. The wild-type plants re- sponded with few differentially expressed genes, mostly involved in drought stress, which is likely a conse- quence of enhanced opening of stomata and concomitant water loss upon a shift toward low C02. In contrast, mutants with impaired activity of photorespiratory enzymes were highly stressed and not able to adjust stomatal conductance to reduced external C02 availability. The transcriptional response of mutant plants was congruent, indicating a general reprogramming to deal with the consequences of reduced C02 availability, signaled by enhanced oxygenation of ribulose-l,5-bisphosphate and amplified by the artificially impaired photorespiratory metabolism. Central in this reprogramming was the pro- nounced reallocation of resources from growth processes to stress responses. Taken together, our results indicate that unrestricted photorespiratory metabolism is a prerequisite for rapid physiological acclimation to a reduction in C02 availability.The photorespiratory pathway or photorespiration is an essential process in oxygenic photosynthetic or- ganisms, which can reduce the efficiency of photosynthetic carbon assimilation and is hence frequently considered as a wasteful process. By comparing the response of the wild-type plants and mutants impaired in photorespiration to a shift in ambient C02 concentrations, we demonstrate that photorespiration also plays a beneficial role during short-term acclimation to reduced C02 availability. The wild-type plants re- sponded with few differentially expressed genes, mostly involved in drought stress, which is likely a conse- quence of enhanced opening of stomata and concomitant water loss upon a shift toward low C02. In contrast, mutants with impaired activity of photorespiratory enzymes were highly stressed and not able to adjust stomatal conductance to reduced external C02 availability. The transcriptional response of mutant plants was congruent, indicating a general reprogramming to deal with the consequences of reduced C02 availability, signaled by enhanced oxygenation of ribulose-l,5-bisphosphate and amplified by the artificially impaired photorespiratory metabolism. Central in this reprogramming was the pro- nounced reallocation of resources from growth processes to stress responses. Taken together, our results indicate that unrestricted photorespiratory metabolism is a prerequisite for rapid physiological acclimation to a reduction in C02 availability.

关 键 词:PHOTORESPIRATION STARVATION stress STOMATA transcription Arabidopsis thaliana 

分 类 号:Q94[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象