The Phytol Phosphorylation Pathway Is Essential for the Biosynthesis of Phylloquinone, which Is Required for Photosystem I Stability in Arabidopsis  被引量:4

The Phytol Phosphorylation Pathway Is Essential for the Biosynthesis of Phylloquinone, which Is Required for Photosystem I Stability in Arabidopsis

在线阅读下载全文

作  者:Lei Wang Qingwei Li Aihong Zhang Wen Zhou Rui Jiang Zhipan Yang Huixia Yang Xiaochun Qin Shunhua Ding Qingtao Lu Xiaogang wen Congming Lu 

机构地区:[1]Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China [2]University of Chinese Academy of Sciences, Beijing 100049, China [3]National Center for Plant Gene Research, Beijing 100093, China

出  处:《Molecular Plant》2017年第1期183-196,共14页分子植物(英文版)

摘  要:Phytyl-diphosphate, which provides phytyl moieties as a common substrate in both tocopherol and phyllo- quinone biosynthesis, derives from de novo isoprenoid biosynthesis or a salvage pathway via phytol phos- phorylation. However, very little is known about the role and origin of the phytyl moiety for phylloquinone biosynthesis. Since VTE6, a phytyl-phosphate kinase, is a key enzyme for phytol phosphorylation, we char- acterized Arabidopsis vte6 mutants to gain insight into the roles of phytyl moieties in phylloquinone biosyn- thesis and of phylloquinone in photosystem I (PSI) biogenesis. The VTE6 knockout mutants vte6-1 and vte6-2 lacked detectable phylloquinone, whereas the phylloquinone content in the VTE6 knockdown mutant vte6-3 was 90% lower than that in wild-type. In vte6 mutants, PSI function was impaired and accu- mulation of the PSI complex was defective. The PSI core subunits PsaA/B were efficiently synthesized and assembled into the PSI complex in vte6-3. However, the degradation rate of PSI subunits in the assembled PSI complex was more rapid in vte6-3 than in wild-type. In vte6-3, PSI was more susceptible to high-light damage than in wild-type. Our results provide the first genetic evidence that the phytol phosphorylation pathway is essential for phylloquinone biosynthesis, and that phylloquinone is required for PSI complex stability.Phytyl-diphosphate, which provides phytyl moieties as a common substrate in both tocopherol and phyllo- quinone biosynthesis, derives from de novo isoprenoid biosynthesis or a salvage pathway via phytol phos- phorylation. However, very little is known about the role and origin of the phytyl moiety for phylloquinone biosynthesis. Since VTE6, a phytyl-phosphate kinase, is a key enzyme for phytol phosphorylation, we char- acterized Arabidopsis vte6 mutants to gain insight into the roles of phytyl moieties in phylloquinone biosyn- thesis and of phylloquinone in photosystem I (PSI) biogenesis. The VTE6 knockout mutants vte6-1 and vte6-2 lacked detectable phylloquinone, whereas the phylloquinone content in the VTE6 knockdown mutant vte6-3 was 90% lower than that in wild-type. In vte6 mutants, PSI function was impaired and accu- mulation of the PSI complex was defective. The PSI core subunits PsaA/B were efficiently synthesized and assembled into the PSI complex in vte6-3. However, the degradation rate of PSI subunits in the assembled PSI complex was more rapid in vte6-3 than in wild-type. In vte6-3, PSI was more susceptible to high-light damage than in wild-type. Our results provide the first genetic evidence that the phytol phosphorylation pathway is essential for phylloquinone biosynthesis, and that phylloquinone is required for PSI complex stability.

关 键 词:phytol phosphorylation VTE6 PHYLLOQUINONE PSI stability 

分 类 号:Q94[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象