机构地区:[1]institute for Plant Biochemistry [2]Molecular Proteomics La_boratory, BMFZ Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, UniversitatsstraBe 1, 40225 Duseldorf, Germany [3]present address: Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
出 处:《Molecular Plant》2017年第1期197-211,共15页分子植物(英文版)
摘 要:Blue native-PAGE (BN-PAGE) resolves protein complexes in their native state. When combined with immu- noblotting, it can be used to identify the presence of high molecular weight complexes at high resolution for any protein, given a suitable antibody. To identify proteins in high molecular weight complexes on a large scale and to bypass the requirement for specific antibodies, we applied a tandem mass spectrometry (MS/MS) approach to BN-PAGE-resolved chloroplasts. Fractionation of the gel into six bands allowed iden- tification and label-free quantification of 1000 chloroplast proteins with native molecular weight separation. Significantly, this approach achieves a depth of identification comparable with traditional shotgun proteo- mic analyses of chloroplasts, indicating much of the known chloroplast proteome is amenable to MS/MS identification under our fractionation scheme. By limiting the number of fractionation bands to six, we facil- itate scaled-up comparative analyses, as we demonstrate with the reticulata chloroplast mutant displaying a reticulated leaf phenotype. Our comparative proteomics approach identified a candidate interacting protein of RETICULATA as well as effects on lipid remodeling proteins, amino acid metabolic enzymes, and plastid division machinery. We additionally highlight selected proteins from each sub-compartment of the chloroplast that provide novel insight on known or hypothesized protein complexes to further illus- trate the utility of this approach. Our results demonstrate the high sensitivity and reproducibility of this technique, which is anticipated to be widely adaptable to other sub-cellular compartments.Blue native-PAGE (BN-PAGE) resolves protein complexes in their native state. When combined with immu- noblotting, it can be used to identify the presence of high molecular weight complexes at high resolution for any protein, given a suitable antibody. To identify proteins in high molecular weight complexes on a large scale and to bypass the requirement for specific antibodies, we applied a tandem mass spectrometry (MS/MS) approach to BN-PAGE-resolved chloroplasts. Fractionation of the gel into six bands allowed iden- tification and label-free quantification of 1000 chloroplast proteins with native molecular weight separation. Significantly, this approach achieves a depth of identification comparable with traditional shotgun proteo- mic analyses of chloroplasts, indicating much of the known chloroplast proteome is amenable to MS/MS identification under our fractionation scheme. By limiting the number of fractionation bands to six, we facil- itate scaled-up comparative analyses, as we demonstrate with the reticulata chloroplast mutant displaying a reticulated leaf phenotype. Our comparative proteomics approach identified a candidate interacting protein of RETICULATA as well as effects on lipid remodeling proteins, amino acid metabolic enzymes, and plastid division machinery. We additionally highlight selected proteins from each sub-compartment of the chloroplast that provide novel insight on known or hypothesized protein complexes to further illus- trate the utility of this approach. Our results demonstrate the high sensitivity and reproducibility of this technique, which is anticipated to be widely adaptable to other sub-cellular compartments.
关 键 词:CHLOROPLAST blue native-PAGE comparative proteomics protein complex oligomeric state RETICULATA
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...