The classification of bi-quintic parametric polynomial minimal surfaces  

The classification of bi-quintic parametric polynomial minimal surfaces

在线阅读下载全文

作  者:LI Cai-yun ZHU Chun-gang 

机构地区:[1]School of Mathematics and Physics Science, Dalian University of Technology, Panjin 124221, China [2]School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2017年第1期14-26,共13页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(11401077,11671068,11271060);the Fundamental Research of Civil Aircraft of China(MJ-F-2012-04);the Fundamental Research Funds for the Central Universities of China(DUT16LK38)

摘  要:Parametric polynomial surface is a fundamental element in CAD systems. Since the most of the classic minimal surfaces are represented by non-parametric polynomial, it is interesting to study the minimal surfaces represented in parametric polynomial form. Recently,Ganchev presented the canonical principal parameters for minimal surfaces. The normal curvature of a minimal surface expressed in these parameters determines completely the surface up to a position in the space. Based on this result, in this paper, we study the bi-quintic isothermal minimal surfaces. According to the condition that any minimal isothermal surface is harmonic,we can acquire the relationship of some control points must satisfy. Follow up, we obtain two holomorphic functions f(z) and g(z) which give the Weierstrass representation of the minimal surface. Under the constrains that the minimal surface is bi-quintic, f(z) and g(z) can be divided into two cases. One case is that f(z) is a constant and g(z) is a quadratic polynomial, and another case is that the degree of f(z) and g(z) are 2 and 1 respectively. For these two cases,we transfer the isothermal parameter to canonical principal parameter, and then compute their normal curvatures and analyze the properties of the corresponding minimal surfaces. Moreover,we study some geometric properties of the bi-quintic harmonic surfaces based on the B′ezier representation. Finally, some numerical examples are demonstrated to verify our results.Parametric polynomial surface is a fundamental element in CAD systems. Since the most of the classic minimal surfaces are represented by non-parametric polynomial, it is interesting to study the minimal surfaces represented in parametric polynomial form. Recently,Ganchev presented the canonical principal parameters for minimal surfaces. The normal curvature of a minimal surface expressed in these parameters determines completely the surface up to a position in the space. Based on this result, in this paper, we study the bi-quintic isothermal minimal surfaces. According to the condition that any minimal isothermal surface is harmonic,we can acquire the relationship of some control points must satisfy. Follow up, we obtain two holomorphic functions f(z) and g(z) which give the Weierstrass representation of the minimal surface. Under the constrains that the minimal surface is bi-quintic, f(z) and g(z) can be divided into two cases. One case is that f(z) is a constant and g(z) is a quadratic polynomial, and another case is that the degree of f(z) and g(z) are 2 and 1 respectively. For these two cases,we transfer the isothermal parameter to canonical principal parameter, and then compute their normal curvatures and analyze the properties of the corresponding minimal surfaces. Moreover,we study some geometric properties of the bi-quintic harmonic surfaces based on the B′ezier representation. Finally, some numerical examples are demonstrated to verify our results.

关 键 词:polynomial parametric curvature canonical compute quadratic satisfy isothermal acquire verify 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象