基于博弈论和模糊数学的桥梁风险评价模型  被引量:15

A New Model Based on the Games Theory and Fuzzy Mathematics in Bridge Engineering Risk Assessment

在线阅读下载全文

作  者:任丽超[1] 栗振锋[1] REN Lichao LI Zhenfeng(School of Transportation & Logistics, Taiyuan University of Science & Technology, Taiyuan, Shanxi 030024, Chin)

机构地区:[1]太原科技大学交通与物流学院,山西太原030024

出  处:《公路工程》2017年第1期163-169,共7页Highway Engineering

基  金:山西省回国留学人员科研资助项目(2013-096);山西省科技攻关资助项目(20120321023-05)

摘  要:为克服单一风险评价方法过于主观或客观的缺点,文章首先基于博弈组合赋权法建立了桥梁工程风险评价模型,从自然风险、人为风险、技术和结构退化等风险来源方面建立了风险指标评价体系,对各层风险因素分别基于AHP、熵理论进行主、客观权重求解,兼顾专家的主观意项和工程固有的客观信息,基于博弈原理对风险指标的权重进行组合赋权;最后基于模糊数学法和最大隶属度原理进行了工程风险等级评估。以某桥为例,验证了模型的科学性。It is too subjective or objective to assess the project' s risk with just one single tradition-al evaluation method and to overcome this shortcoming, this paper established a new model for bridge en- gineering risk assessment based on the games theory and comprehensive weight. The risk evaluation sys- tem of bridge engineering is constructed just from four parts, such as the natural risk, human factor, deg- radation of structure, and technique. Then the subjective and objective weights of the risk factors in each layer, can be carried on , respectively based on the Analytic Hierarchy Process and Entropy theory, with both the expert~ subjective judgments and the engineering project' s inherent information engineering con- sidered. After that, the comprehensive weight of each evaluation-index can be calculated based on the principle of the Games theory. Finally the fuzzy mathematics method and the maximum membership de- gree principle are introduced to evaluate the risk degree of engineering project. The example of one bridge's risk assessment is given to verify the scientific nature of the model.

关 键 词:桥梁工程 博弈组合赋权 熵权 模糊数学 风险评价 

分 类 号:U442.1[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象