检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄帅[1] 宋开宏[1] 罗菊花[2] 赵晋陵[1] 马荣华[2]
机构地区:[1]安徽大学计算智能与信号处理教育部重点实验室,合肥230039 [2]中国科学院流域地理学重点实验室中国科学院南京地理与湖泊研究所,南京210008
出 处:《湖泊科学》2017年第2期490-497,共8页Journal of Lake Sciences
基 金:国家自然科学基金项目(41301375);苏州市阳澄湖生态系统优化提升研究基金项目(SZLHZ 2014-G-003)联合资助
摘 要:获取并掌握浅水湖泊围网养殖区域的时空分布信息对合理规划围网养殖进而提升湖泊水质具有重要意义.本文以长江下游典型的围网养殖浅水湖泊——阳澄湖作为研究区,利用资源三号(ZY-3)高分遥感影像,针对围网区与非围网区的光谱空间变化特征,采用梯度变换方法,尝试提出一种浅水湖泊围网区的遥感提取算法;并以人工解译结果作为参考,对提取结果进行验证.研究结果发现该算法对浅水湖泊围网养殖区的提取精度为90.66%,可进一步用于开展长时序的浅水湖泊围网区动态变化研究,进而为湖泊环境的政府部门制定湖泊水质提升和围网区合理规划政策提供决策依据.Mastering the tempo-spatial distribution information of enclosure culture areas is useful for a scientific planning of enclo- sure culture areas of shallow lakes and making effective measurements to improve water quality. This study took Lake Yangcheng as a study area, which is a typical enclosure culture area in the lower reaches of Yangtze River. An extraction algorithm of remote sensing images is proposed through the gradient transformation of remote sensing data based on the differences between enclosure and non-enclosure areas in spectral space. A high-resolution ZY-3 image was used to acquire the spatial distribution of enclosure culture areas in shallow lakes. The enclosure culture areas extracted using the proposed extraction algorithm and the manual visual interpretation were compared to evaluate the classification accuracy. The results show that the overall classification accuracy reached to 90.66%. The proposed method could be used to monitor the dynamic changes of enclosure culture areas in shallow lakes based on the ZY-3 images.
关 键 词:浅水湖泊 围网养殖区 梯度变换 卫星遥感 阳澄湖
分 类 号:X524[环境科学与工程—环境工程] X87
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229