小波能量偏度神经网络的HVDC换相失败故障诊断  被引量:4

Fault Diagnosis of Commutation Failures in HVDC System Based on Neural Network of Wavelet Energy Skewness

在线阅读下载全文

作  者:朱艳[1] 王渝红[1] 丁志林[2] 宋梁[2] 李兴源[1] 邱大强[2] ZHU Yan WANG Yuhong DING Zhilin SONG Liang LI Xingyuan QIU Daqiang(School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China SGCC Sichuan Electric Power Company and Maintenance Company, Chengdu 610041, China)

机构地区:[1]四川大学电气信息学院,成都610065 [2]国网四川省电力公司检修公司,成都610041

出  处:《电力系统及其自动化学报》2017年第2期39-44,共6页Proceedings of the CSU-EPSA

基  金:国家高技术研究发展计划(863计划)资助项目(2011AA05A119);四川省电力公司检修公司科技资助项目(SGSCJXOOYJKJ1301058)

摘  要:为了有效诊断引发换相失败的故障原因,提出了一种基于小波能量偏度神经网络的高压直流输电系统换相失败故障诊断新方法。首先对采集到的逆变侧直流电压故障信号进行15层小波分解,获取各尺度下的小波变换系数,提取小波能量偏度;然后构造信号的小波能量偏度特征向量,并以此向量作为故障样本对3层BP神经网络进行训练,实现换相失败故障原因诊断。以某±800kV特高压直流系统为例,通过对引发换相失败故障的多种原因进行仿真分析,用该方法进行小波分解、故障特征提取和BP网络训练,并对某未知故障进行识别。结果表明,该方法能准确诊断出引发换相失败的故障原因。Commutation failure is a common fault in HVDC systems. In order to effectively diagnose the causes of com- mutation failures, a new fault diagnosis method of commutation failures in the HVDC system is proposed based on the neural network of wavelet energy skewness. After the 15-layer wavelet decomposition of acquired DC voltage fault signal in the inverter side is performed, the wavelet coefficients on every scale are obtained and the wavelet energy skewness is extracted to construct the eigenvector of wavelet energy skewness. With this eigenvector as fault sample, three-layer BP neutral network is trained to implement the fault diagnosis of commutation failures. A ± 800 kV UHVDC system is taken as an example, and a variety of causes inducing failure fault are simulated and analyzed. This method is used to conduct wavelet analysis, fault feature extraction and BP neural network training. At last, the unknown fault is identified. The results show that the method can accurately diagnose the fault cause of commutation failures.

关 键 词:换相失败 小波能量偏度 神经网络 故障诊断 

分 类 号:TM711[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象