融合相似用户和信任关系的动态反馈协同过滤推荐算法  被引量:3

Collaborative filtering recommendation algorithm of dynamic feedback combining similar users with trust relationship

在线阅读下载全文

作  者:高董英 邓新国[1] 肖如良[2] GAO Dongying DENG Xinguo XIAO Ruliang(College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350116, China Faculty of Software, Fujian Normal University, Fuzhou, Fujian 350007, China)

机构地区:[1]福州大学数学与计算机科学学院,福建福州350116 [2]福建师范大学软件学院,福建福州350007

出  处:《福州大学学报(自然科学版)》2017年第1期25-31,共7页Journal of Fuzhou University(Natural Science Edition)

基  金:国家自然科学基金资助项目(11501115);福建省出国留学奖学金资助项目(2015071003)

摘  要:为了克服推荐算法的静态性缺点,提出融合相似用户和信任关系的动态反馈协同过滤推荐算法.该算法用动态因子融合相似用户和信任关系,动态因子初始取随机数,根据用户反馈和系统预测的误差建立正负反馈机制.按照反馈类型,选择增值或衰减函数适当调整动态因子,以便系统更好预测用户评分.在真实数据集Epinions上的实验表明,采用正负反馈的动态融合算法,不仅克服了静态性缺点,而且较基于相似用户或者信任关系的推荐进一步提高了推荐准确率.In order to overcome the shortcoming of the static characteristics in recommendation algorithms, the collaborative filtering recommendation algorithm of dynamic feedback combining similar users with trust relationship is proposed. The algorithm integrates similar users with trust relationship using dynamic factors, which are randomly initialized. The positive and negative feedback mechanism is established according to the error between user feedback and system prediction. In the light of the type of feedback, the value added or attenuation function is selected to properly adjust dynamic factors so that the system better predicts the user' s score. Experiments using the real data set Epinions show that the dynamic fusion algorithm with the positive and negative feedback further improves the recommendation accuracy than that based on similar users or trust relationship.

关 键 词:协同过滤推荐 相似用户 信任关系 动态融合 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象