基于声发射信号信息距的滚动轴承故障诊断  被引量:15

Fault diagnosis for rolling element bearings based on information exergy distance of acoustic emission signal

在线阅读下载全文

作  者:田晶[1,2] 艾延廷[2] 赵明[1] 王志[2] 关焦月 TIAN Jing AI Yan-ting ZHAO Ming WANG Zhi GUAN Jiao-yue(School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System, Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China)

机构地区:[1]西北工业大学动力与能源学院,西安710072 [2]沈阳航空航天大学航空航天工程学部辽宁省航空推进系统先进测试技术重点实验室,沈阳110136

出  处:《航空动力学报》2017年第1期148-154,共7页Journal of Aerospace Power

基  金:国家自然科学基金(51505300);中航工业产学研专项项目(cxy2012sh17)

摘  要:在信息熵理论基础上,提出了一种融合小波能谱与马氏距离的信息距滚动轴承故障诊断方法.利用双转子试验台对滚动轴承内圈故障、外圈故障、滚动体故障、内圈-滚动体故障和内圈-外圈故障进行模拟,并采集其声发射信号.利用提出的信息距方法对获取的声发射信号进行分析,成功实现滚动轴承单一故障和耦合故障诊断.结果表明该方法信息利用率高于信息熵方法,能够清晰和准确地诊断出滚动轴承早期故障,效果明显优于信息熵距的诊断方法.Based on the information entropy theory,a fault diagnosis methodology for rolling element bearings was proposed.It is a fusion of wavelet energy spectrum exergy and Mahalanobis distance.Inner ring fault,outer ring fault,rolling element fault,inner ringrolling element fault and inner ring-outer ring fault of rolling element bearing were simulated on a twin spool rotor test rig.The acoustic emission signals of each fault were collected.Single fault and coupling faults of rolling element bearings were successfully diagnosed using the information exergy distance method for acoustic emission signals.The diagnosis results show that the method has higher information utilization ratio than the information entropy method.It can diagnose early faults in rolling element bearing clearly and accurately,which is proved more effective than the information entropy distance method.

关 键 词:信息距 声发射 马氏距离 滚动轴承 故障诊断 

分 类 号:V231.92[航空宇航科学与技术—航空宇航推进理论与工程] TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象