Establishment of one-step approach to detoxification of hypertoxic aconite based on the evaluation of alkaloids contents and quality  被引量:9

Establishment of one-step approach to detoxification of hypertoxic aconite based on the evaluation of alkaloids contents and quality

在线阅读下载全文

作  者:ZHANG Ding-Kun HAN Xue TAN Peng LI Rui-Yu NIU Ming ZHANG Cong-En WANG Jia-Bo YANG Ming XIAO Xiao-He 

机构地区:[1]Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China [2]China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China [3]Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China [4]Integrative Medical Center, 302 Military Hospital, Beijing 100039, China [5]Sichuan Good Doctor Panxi Pharmaceutical Co., Ltd., Xichang 610031, China

出  处:《Chinese Journal of Natural Medicines》2017年第1期49-61,共13页中国天然药物(英文版)

基  金:supported by National Nature Science Fundation of China(Nos.81274026 and 81403115)

摘  要:Aconite is a valuable drug and also a toxic material, which can be used only after detoxification processing. Although traditional processing methods can achieve detoxification effect as desired, there are some obvious drawbacks, including a significant loss of alkaloids and poor quality consistency. It is thus necessary to develop a new detoxification approach. In the present study, we designed a novel one-step detoxification approach by quickly drying fresh-cut aconite particles. In order to evaluate the technical advantages, the contents of mesaconitine, aconitine, hypaconitine, benzoylmesaconine, benzoylaconine, benzoylhypaconine, neoline, fuziline, songorine, and talatisamine were determined using HPLC and UHPLC/Q-TOF-MS. Multivariate analysis methods, such as Clustering analysis and Principle component analysis, were applied to determine the quality differences between samples. Our results showed that traditional processes could reduce toxicity as desired, but also led to more than 85.2% alkaloids loss. However, our novel one-step method was capable of achieving virtually the same detoxification effect, with only an approximately 30% alkaloids loss. Cluster analysis and Principal component analysis analyses suggested that Shengfupian and the novel products were significantly different from various traditional products. Acute toxicity testing showed that the novel products achieved a good detoxification effect, with its maximum tolerated dose being equivalent to 20 times of adult dosage. And cardiac effect testing also showed that the activity of the novel products was stronger than that of traditional products. Moreover, particles specification greatly improved the quality consistency of the novel products, which was immensely superior to the traditional products. These results would help guide the rational optimization of aconite processing technologies, providing better drugs for clinical treatment.Aconite is a valuable drug and also a toxic material, which can be used only after detoxification processing. Although traditional processing methods can achieve detoxification effect as desired, there are some obvious drawbacks, including a significant loss of alkaloids and poor quality consistency. It is thus necessary to develop a new detoxification approach. In the present study, we designed a novel one-step detoxification approach by quickly drying fresh-cut aconite particles. In order to evaluate the technical advantages, the contents of mesaconitine, aconitine, hypaconitine, benzoylmesaconine, benzoylaconine, benzoylhypaconine, neoline, fuziline, songorine, and talatisamine were determined using HPLC and UHPLC/Q-TOF-MS. Multivariate analysis methods, such as Clustering analysis and Principle component analysis, were applied to determine the quality differences between samples. Our results showed that traditional processes could reduce toxicity as desired, but also led to more than 85.2% alkaloids loss. However, our novel one-step method was capable of achieving virtually the same detoxification effect, with only an approximately 30% alkaloids loss. Cluster analysis and Principal component analysis analyses suggested that Shengfupian and the novel products were significantly different from various traditional products. Acute toxicity testing showed that the novel products achieved a good detoxification effect, with its maximum tolerated dose being equivalent to 20 times of adult dosage. And cardiac effect testing also showed that the activity of the novel products was stronger than that of traditional products. Moreover, particles specification greatly improved the quality consistency of the novel products, which was immensely superior to the traditional products. These results would help guide the rational optimization of aconite processing technologies, providing better drugs for clinical treatment.

关 键 词:ACONITE Detoxication methods Quantitative determination Cardiac effect Quality consistency. 

分 类 号:R917[医药卫生—药物分析学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象