Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions  被引量:6

Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions

在线阅读下载全文

作  者:Xing Zhong Benjamin Papandrea Yuxi Xu Zhaoyang Lin Hua Zhang Yuan Liu Yu Huang Xiangfeng Duan 

机构地区:[1]Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA [2]California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA [3]Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA

出  处:《Nano Research》2017年第2期472-482,共11页纳米研究(英文版)

摘  要:Lithium-air batteries have attracted significant interest for applications in high energy density mobile power supplies, yet there are considerable challenges to the development of rechargeable Li-air batteries with stable cycling performance under ambient conditions. Here we report a three-dimensional (3D) hydrophobic graphene membrane as a moisture-resistive cathode for high performance Li-air batteries. The 3D graphene membrane features a highly interconnected graphene network for efficient charge transport, a highly porous structure for efficient diffusion of oxygen and electrolyte ions, a large specific surface area for high capacity storage of the insulating discharge product, and a network of highly tortuous hydrophobic channels for O2/H20 selectivity. These channels facilitate 02 ingression while retarding moisture diffusion and ensure excellent charge/ discharge cycling stability under ambient conditions. The membrane can thus enable robust Li-air batteries with exceptional performance, including a maximum cathode capacity that exceeds 5,700 mAh/g and excellent recharge cycling behavior (〉2,000 cycles at 140 mAh/g, and 〉100 cycles at 1,400 mAh/g). The graphene membrane air cathode can deliver a lifetime capacity of 100,000-300,000 mAh/g, comparable to that of a typical lithium ion battery cathode. The stable operation of Li-air batteries with significantly improved single charge capacities and lifetime capacities comparable to those of Li-ion batteries may offer an attractive high energy density storage alternative for future mobile power supplies. These batteries may provide much longer battery lives and greatly reduced recharge frequency.Lithium-air batteries have attracted significant interest for applications in high energy density mobile power supplies, yet there are considerable challenges to the development of rechargeable Li-air batteries with stable cycling performance under ambient conditions. Here we report a three-dimensional (3D) hydrophobic graphene membrane as a moisture-resistive cathode for high performance Li-air batteries. The 3D graphene membrane features a highly interconnected graphene network for efficient charge transport, a highly porous structure for efficient diffusion of oxygen and electrolyte ions, a large specific surface area for high capacity storage of the insulating discharge product, and a network of highly tortuous hydrophobic channels for O2/H20 selectivity. These channels facilitate 02 ingression while retarding moisture diffusion and ensure excellent charge/ discharge cycling stability under ambient conditions. The membrane can thus enable robust Li-air batteries with exceptional performance, including a maximum cathode capacity that exceeds 5,700 mAh/g and excellent recharge cycling behavior (〉2,000 cycles at 140 mAh/g, and 〉100 cycles at 1,400 mAh/g). The graphene membrane air cathode can deliver a lifetime capacity of 100,000-300,000 mAh/g, comparable to that of a typical lithium ion battery cathode. The stable operation of Li-air batteries with significantly improved single charge capacities and lifetime capacities comparable to those of Li-ion batteries may offer an attractive high energy density storage alternative for future mobile power supplies. These batteries may provide much longer battery lives and greatly reduced recharge frequency.

关 键 词:energy storage graphene framework three-dimensional(3D)-network lithium air-battery water resistive 

分 类 号:O[理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象