检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈自岩 黄宇[2] 王洋[2] 傅兴玉[2] 付琨[2] Chen Ziyan Huang Yu Wang Yang Fu Xingyu Fu Kun(University of Chinese Academy of Sciences ,Beijing 100049, China Key Laboratory of Technology in Geospatial Information Processing and Application System,Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
机构地区:[1]中国科学院大学,北京100049 [2]中国科学院空间信息处理与应用系统重点实验室,北京100190
出 处:《计算机应用与软件》2017年第3期27-30,80,共5页Computer Applications and Software
基 金:国家自然科学基金项目(61331017)
摘 要:情感分析主要研究人们正面或负面情感的表达。随着网页文本的爆炸式增长,情感分析在学术研究和实际应用中都成了热门话题。细粒度的情感分析方法通常采用两步策略,从而极易产生自底向上的层叠错误问题。为了解决这个问题,研究者们提出了一种基于马尔科夫逻辑的细粒度的情感分析联合框架。其中最常用的传统全局特征是自底向上和自顶向下特征。为了更好地提升细粒度情感分析的联合学习能力,一种新的语义相似特征被提了出来,中文情感分析数据集上的实验证明,此特征能对情感分析联合框架带来极大的改进。Sentiment analysis mainly focuses on the study of people' s emotional expressions including positive and negative sentiment. With the explosive growth of web texts, sentiment analysis has become a hot topic in both academic researches and practical applications. The method of fine-grained sentiment analysis traditionally adopts a 2-step strategy, which is extremely easy to result in stack-up bottom-up errors. A joint fine-grained sentiment analysis framework based on Markov logic is proposed to solve this problem. "Bottom-up" and "Top-down" are the two most commonly used traditional overall semantic semantic similarity similarity features. In order to improve the joint learning ability of fine-grained sentiment analysis, a new feature has been proposed. Experiments on the data set of Chinese sentiment analysis prove that the feature can bring a significant improvement to the joint fine-grained sentiment analysis framework.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28