机构地区:[1]Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China [2]Kaifeng Institute for Food and Drug Control,Kaifeng 475000,China
出 处:《Journal of Genetics and Genomics》2017年第2期107-118,共12页遗传学报(英文版)
基 金:supported by the grants from the Ministry of Science and Technology of China(No.2016YFD0101801);the Ministry of Agriculture of China(No.2014ZX08001002);the National Natural Science Foundation of China(Nos.31371590 and 31571245)
摘 要:Lesion mimic mutant(LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5,which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae(Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A(e EF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indicaspecific manner, respectively. In addition, high-throughput m RNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous e EF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.Lesion mimic mutant(LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5,which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae(Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A(e EF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indicaspecific manner, respectively. In addition, high-throughput m RNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous e EF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.
关 键 词:Lesion mimic eEF1A-like gene Cell death Disease resistance Rice
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...