一种基于支持向量回归的混合建模方法  被引量:3

An SVR based hybrid modeling method

在线阅读下载全文

作  者:孙泽斌[1] 赵琦[1] 赵洪博[1] 冯文全[1] 张文峰[1] 杨天社[2] SUN Zebin ZHAO Qi ZHAO Hongbo FENG Wenquan ZHANG Wenfeng YANG Tianshe(School of Electronic and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China State Key Laboratory of Astronautic Dynamics, Xi'an Satellite Control Center,Xi'an 710043, China)

机构地区:[1]北京航空航天大学电子信息工程学院,北京100083 [2]西安卫星测控中心宇航动力学国家重点实验室,西安710043

出  处:《北京航空航天大学学报》2017年第2期352-359,共8页Journal of Beijing University of Aeronautics and Astronautics

基  金:国家"973"计划~~

摘  要:近年来,随着计算能力的不断提高,数据驱动的建模方法受到了广泛的关注,对单模式系统进行定量分析的建模方法获得了诸多研究。然而,实际应用中大多数系统为多模式系统,不但各个模式有着不同的连续行为,连续状态还会在模式之间进行切换。针对这一情形,本文提出了经验概率混合自动机模型,并提出了针对该模型的基于支持向量回归(SVR)的多模式定性定量混合建模方法。该方法使用小波技术识别模式切换点,并在各个模式下单独建立支持向量模型,最后使用D-Markov机整合模型。经实例验证,该方法与传统支持向量回归模型的稳定性接近,但精确程度显著提高。As computing power increases in recent years,data-driven modeling method receives much attention.Modeling methods to analyze quantitative behavior of systems with single mode have been researched much.However,most systems have multiple modes which own different continuous behavior and are influenced by continuous state when switching.This paper proposes the empirical probabilistic hybrid automata model and the qualitative and quantitative hybrid modeling method based on support vector regression(SVR).First,switching points between modes are recognized via wavelet and then the SVR sub-models are constructed for each mode.Finally,all sub-models are integrated within D-Markov machine.The example verification results demonstrate that the proposed method is as stable as traditional SVR model,and much more accurate than it.

关 键 词:混合建模 支持向量回归(SVR) D-Markov机 小波 数据驱动的建模 

分 类 号:TB114.3[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象