Effects of chronic heat stress on granulosa cell apoptosis and follicular atresia in mouse ovary  被引量:5

Effects of chronic heat stress on granulosa cell apoptosis and follicular atresia in mouse ovary

在线阅读下载全文

作  者:Jieyun Li Hui Gao Zhen Tian Yi Wu Yingzheng Wang Yuan Fang Lu Lin Ying Han Shuaishuai Wu Ihtesham Ul Haq Shenming Zeng 

机构地区:[1]Laboratory of Animal Embryonic Biotechnology [2] National Engineering Laboratory for Animal Breeding [3] Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Anima Science and Technology, China Agricultural University, Beijing 100193, China [2]State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

出  处:《Journal of Animal Science and Biotechnology》2017年第1期57-66,共10页畜牧与生物技术杂志(英文版)

基  金:The design of the study and collection,analysis,and interpretation of data and in writing the manuscript were supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20130008130001)

摘  要:Background: Heat stress is known to alter follicular dynamics and granulosa cell function and may contribute to the diminished reproductive efficiency commonly observed in mammals during the summer. Although several investigators have studied heat-induced ovarian injury, few reports have focused on the effects of chronic heat stress on ovarian function and the molecular mechanisms through which it induces ovarian injury.Methods: In Exp. 1, 48 female mice were assigned to a control or heat-stressed treatment. After exposure to a constant temperature of 25 ℃ for 7, 14, 21 or 28 d(n = 6) or to 42 ℃ for 3 h per d for 7, 14, 21 or 28 d(n = 6), the mice were euthanized and their ovaries were analyzed for follicular atresia, granulosa cell apoptosis, changes in the abundance of HSP70 protein and serum concentrations of estradiol. In Exp. 2, the expression of HSP70 and aromatase was quantified in antral follicles cultured in vitro at 37 or 42 ℃ for 24 h. In Exp. 3, granulosa cells from ovaries maintained at 37 or 41 ℃ for 2 h were analyzed for their expression of HSP70, Bim, caspase-3 and cleaved caspase-3.Results: In Exp. 1, body weight and food intake of heat-stressed mice decreased(P 〈 0.05) compared with control mice while the concentration of estradiol in serum was lower(P 〈 0.05) in heat-stressed mice than in control mice. Compared with control mice, the percentage of atretic follicles and the number of antral follicles with severe apoptotic signals were increased(P 〈 0.05) after 21 d of heat-stressed treatment. HSP70 protein was more abundant(P 〈 0.05) in heat-stressed mice than control mice. In Exp. 2, heat stress increased HSP70 and decreased aromatase proteins(P 〈 0.05) in antral follicles. In Exp. 3, TUNEL-positive granulosa cells from heat-stressed ovaries were observed concomitant with a significant increase in HSP70, Bim and cleaved caspase-3 protein.Conclusion: Heat-stress in mice decrease estradiol in serum and aromatase in antral follicles but increasBackground: Heat stress is known to alter follicular dynamics and granulosa cell function and may contribute to the diminished reproductive efficiency commonly observed in mammals during the summer. Although several investigators have studied heat-induced ovarian injury, few reports have focused on the effects of chronic heat stress on ovarian function and the molecular mechanisms through which it induces ovarian injury.Methods: In Exp. 1, 48 female mice were assigned to a control or heat-stressed treatment. After exposure to a constant temperature of 25 ℃ for 7, 14, 21 or 28 d(n = 6) or to 42 ℃ for 3 h per d for 7, 14, 21 or 28 d(n = 6), the mice were euthanized and their ovaries were analyzed for follicular atresia, granulosa cell apoptosis, changes in the abundance of HSP70 protein and serum concentrations of estradiol. In Exp. 2, the expression of HSP70 and aromatase was quantified in antral follicles cultured in vitro at 37 or 42 ℃ for 24 h. In Exp. 3, granulosa cells from ovaries maintained at 37 or 41 ℃ for 2 h were analyzed for their expression of HSP70, Bim, caspase-3 and cleaved caspase-3.Results: In Exp. 1, body weight and food intake of heat-stressed mice decreased(P 〈 0.05) compared with control mice while the concentration of estradiol in serum was lower(P 〈 0.05) in heat-stressed mice than in control mice. Compared with control mice, the percentage of atretic follicles and the number of antral follicles with severe apoptotic signals were increased(P 〈 0.05) after 21 d of heat-stressed treatment. HSP70 protein was more abundant(P 〈 0.05) in heat-stressed mice than control mice. In Exp. 2, heat stress increased HSP70 and decreased aromatase proteins(P 〈 0.05) in antral follicles. In Exp. 3, TUNEL-positive granulosa cells from heat-stressed ovaries were observed concomitant with a significant increase in HSP70, Bim and cleaved caspase-3 protein.Conclusion: Heat-stress in mice decrease estradiol in serum and aromatase in antral follicles but increas

关 键 词:Apoptosis Atresia Follicle Granulosa cells Heat stress Mice 

分 类 号:S814[农业科学—畜牧学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象