检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《齐鲁工业大学学报》2017年第1期45-50,共6页Journal of Qilu University of Technology
基 金:国家自然科学基金(71271125)
摘 要:与传统的频繁模式挖掘相比,高效用模式可以挖掘出具有更高效用价值的模式,提供更丰富的决策信息,其研究也日益受到关注,一些算法也相继提出。为了更好地了解该领域的研究状况,本文对高效用频繁模式挖掘技术进行了综述。首先介绍了效用模式的相关概念;然后,分高效用频繁项集挖掘和高效用序列模式挖掘两个方面详细研究了目前已经提出的挖掘算法。本文对研究人员更好地掌握现有算法并在此基础上提出更好的算法有着重要参考价值。Compared with the classic frequent patterns mining, the utility patterns mining can mine higher utility patterns, and provide more informative and actionable knowledge to decision-making information, so the high utility patterns mining has emerged and the related algorithms are proposed. Therefore, this paper summarized the high utility frequent patterns mining. Firstly, utility framework and the related definitions were introduced.Then the high utility frequent itemsets mining and the high utility sequential patterns mining were introduced and their related algorithms have been proposed.In this paper, the researchers can better understand the existing algorithm and they can put forward better algorithm on the basis of the proposed algorithms.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28