基于马尔可夫链的电动汽车充电需求计算  被引量:27

Calculation of Charging Demand from Electric Vehicles Based on Markov Chain

在线阅读下载全文

作  者:许威[1] 吕林[1] 许立雄[1] 向月[1] 

机构地区:[1]四川大学电气信息学院,成都610065

出  处:《电力系统及其自动化学报》2017年第3期12-19,共8页Proceedings of the CSU-EPSA

基  金:国家自然科学基金资助项目(51377111);四川省科技厅应用基础项目(2015JY0128);四川大学引进人才科研启动项目(1082204112089)

摘  要:充分考虑用户出行习惯的复杂性、多样性,提出了采用马尔可夫链描述电动汽车用户一天出行过程中动力电池荷电状态的变化情况。模拟实时充电行为,然后根据电动汽车的出行时间对应各出行目的地的概率,确定电动汽车一天各时段的区域分布情况,同时考虑交通耗时系数对电动汽车行驶过程的影响,从而预测不同类型日各区域电动汽车的负荷需求情况。采用蒙特卡洛模拟方法对不同渗透率、不同类型日和不同充电阈值等情景下的电动汽车充电负荷进行计算。结果表明,该方法可以较准确地模拟用户的出行规律,反映充电需求的时空分布特点;同时反映出交通状况、电池充电阈值对电动汽车充电需求存在一定的影响。Considering the complexity and diversity of the users' travel habits, Markov chain is used to describe thechanges in the state of charge (SOC) of power battery during the electric vehicle users' travel in a whole day. The real-time charging behavior is simulated, and then according to the probability of travel time corresponding to different desti-nations, the regional distribution of electric vehicles during different periods of a day is determined. By taking into ac-count the influence of traffic time consumption coefficient on the driving process, the regional charging demand on dif-ferent types of day is also predicted. The charging load of electric vehicles with different permeabilities, different typesof day and different charging thresholds is calculated by Monte Carlo simulation method, and the results show that theproposed method can simulate the users' travel habits accurately and reflect the space-time distribution characteristicsof charging demand. Moreover, it is indicated that the traffic situation and the charging threshold of battery have certaineffect on the charging demand from electric vehicles.

关 键 词:电动汽车 马尔科夫链 交通耗时系数 充电阈值 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象