检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力系统及其自动化学报》2017年第3期28-34,共7页Proceedings of the CSU-EPSA
基 金:国家自然科学基金资助项目(51267001);广西科学研究与技术开发项目(14122006-29);广西自然科学基金资助项目(2014GXNSFAA118338)
摘 要:电力系统稳定器是抑制电力系统低频振荡最为有效的措施之一,其参数整定比较复杂和困难。该文依据实测的励磁系统未补偿相频特性,以励磁系统所需要补偿相位的平方与电力系统稳定器可提供相位的平方差的绝对值之和达到最小为优化目标,采用Levenberg-Marquardt优化算法,求取电力系统稳定器超前/滞后环节参数。现场机组实测相频特性的仿真结果表明,该文优化得到的电力系统稳定器参数,能较好地改善相关模式的阻尼特性,抑制电力系统低频振荡。Power system stabilizer (PSS) is one of the most effective measures to damp the low frequency oscillation inthe power system, and its parameter setting is comparatively complex and difficult. According to the measured uncom-pensated phase frequency characteristics of the excitation system, and based on the objective function of minimizing thesum of absolute value of the difference between the square of compensation phase required by excitation system and thesquare of PSS phase, this paper uses Levenberg-Marquardt optimization algorithm to obtain the PSS lead/lag link param-eters. Based on the measured phase frequency characteristics, the simulation result shows that the proposed method caneffectively improve the damping characteristics in certain mode and restrain the low frequency oscillation in the powersystem. The optimization of this paper mainly helps the PSS provide the excitation system with enough phase compensa-tion, and it is noted that Levenberg-Marquardt optimization algorithm is applied to this area for the first time.
关 键 词:低频振荡 电力系统稳定器 LEVENBERG-MARQUARDT算法 参数整定 动态稳定
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222