检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟思岐 任侃[1] 路东明[1] 顾国华[1] 陈钱[1] Meng Siqi Ren Kan Lu Dongming Gu Guohua Chen Qian(School of Electronic and Optical Engineering,Nanjing University of Science and Technology, Nanjing 210094, China)
机构地区:[1]南京理工大学电子工程与光电技术学院,江苏南京210094
出 处:《应用光学》2017年第2期304-308,共5页Journal of Applied Optics
基 金:江苏省自然科学基金(BK20130769)
摘 要:对红外焦平面阵列成像系统而言,基于场景的非均匀校正技术是处理固定图案噪声的关键技术。现有的非均匀校正算法主要被收敛速度和鬼像问题所限制。提出一种新的基于恒定统计算法的自适应场景非均匀校正技术。利用红外图像序列的时域统计信息结合提出的α修正均值滤波来估计探测器的参数,通过减少样本的渐进方差估计,完成成像系统的非均匀性校正。通过模拟和真实的非均匀性图像对算法的性能进行评价。实验结果表明,在继承恒定统计算法快速收敛的同时,图像峰值信噪比较恒定校正法及常系数α校正算法分别有44.5%和32.9%的提升,图像鬼像问题有明显改善。For infrared focal-plane array imaging system, scene-based non-uniformity correction is key technique to deal with fixed pattern noise. Existing algorithms are mainly restricted by convergence speed and ghosting artifacts. In this paper, a novel adaptive scene-based non-uniformity correction technique is presented, which is based on constant-statistics method (CS). Utilizing temporal statistics of infrared image sequences, the proposed method applies an alpha-trimmed mean filter to estimate detector parameters and minimize sample asymptotic variance estimate. Performance of proposed technique is evaluated by simulation and real non-uniformity image. Experimental results show the proposed method inherits characteristics of fast convergence of CS method and increases peak signal to noise ratio by 44.5% and 32.9% respectively, and image ghost problem is improved obviously.
关 键 词:红外焦平面阵列 非均匀性校正 恒定统计 修正均值滤波
分 类 号:TN216[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.73.0