Creep Behavior and Microstructure Evolution of Sand–Cast Mg–4Y–2.3Nd–1Gd–0.6Zr Alloy Crept at 523–573 K  被引量:9

Creep Behavior and Microstructure Evolution of Sand–Cast Mg–4Y–2.3Nd–1Gd–0.6Zr Alloy Crept at 523–573 K

在线阅读下载全文

作  者:Y.H.Kang H.Yan R.S.Chen 

机构地区:[1]The Group of Magnesium Alloys and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China [2]University of the Chinese Academy of Sciences,Beijing 100049,China

出  处:《Journal of Materials Science & Technology》2017年第1期79-89,共11页材料科学技术(英文版)

基  金:funded by the National Basic Research Program of China(No.2013CB632202 and No.51531002);the National Natural Science Foundation of China(No.51301173)

摘  要:High temperature tensile-creep behavior of Mg-4Y-2.3Nd-IGd-O.6Zr (wt%, WE43(T6)) alloy at 523- 573 K was investigated. The creep stress exponent is equal to 4.6, suggesting the underlying dislocation creep mechanism. The activation energy is (199 _+ 23) kJ/mol, which is higher than that for self- diffusion in Mg and is believed to be associated with precipitates coarsening or cross slip. The creep mechanism is further suggested to be dislocation climb at 523 K, while a cross slip at 573 K is possible. The metastable 13' and ~]1 phases in the WE43(T6) alloy were relatively thermal stable at 523 K and could be effective to hinder the dislocation climb, which contributed to its excellent creep resistance. However, at 573 K it readily transforms into equilibrium/3e phase and coarsens within two hours, thereby causing a decrease of creep resistance. In addition, precipitate free zones approximately normal to applied stress direction (directional PFZs) developed during the creep deformation, especially at 573 K. Those zones became preferential sites to nucleate, extend and connect microcracks and cavities, which lead to the intergranular creep fracture. Improving the thermal stability of precipitates or introducing thermally stable fine plate-shaped precipitates on the basal planes of Mg matrix could enhance the high temperature creep resistance.High temperature tensile-creep behavior of Mg-4Y-2.3Nd-IGd-O.6Zr (wt%, WE43(T6)) alloy at 523- 573 K was investigated. The creep stress exponent is equal to 4.6, suggesting the underlying dislocation creep mechanism. The activation energy is (199 _+ 23) kJ/mol, which is higher than that for self- diffusion in Mg and is believed to be associated with precipitates coarsening or cross slip. The creep mechanism is further suggested to be dislocation climb at 523 K, while a cross slip at 573 K is possible. The metastable 13' and ~]1 phases in the WE43(T6) alloy were relatively thermal stable at 523 K and could be effective to hinder the dislocation climb, which contributed to its excellent creep resistance. However, at 573 K it readily transforms into equilibrium/3e phase and coarsens within two hours, thereby causing a decrease of creep resistance. In addition, precipitate free zones approximately normal to applied stress direction (directional PFZs) developed during the creep deformation, especially at 573 K. Those zones became preferential sites to nucleate, extend and connect microcracks and cavities, which lead to the intergranular creep fracture. Improving the thermal stability of precipitates or introducing thermally stable fine plate-shaped precipitates on the basal planes of Mg matrix could enhance the high temperature creep resistance.

关 键 词:WE43 alloy Creep PFZs PRECIPITATE Fracture 

分 类 号:TG146.22[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象