机构地区:[1]Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China [2]Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China [3]School of Metallurgy and Chemical Engineering, Jiangxi University of Science & Technology, Ganzhou 341000, China
出 处:《Journal of Rare Earths》2017年第3期290-299,共10页稀土学报(英文版)
基 金:supported by “Hundreds Talents Program” from Chinese Academy of Sciences,National Natural Science Foundation of China(21571179);Science and Technology Major Project of the Fujian Province,China(2015HZ0101);Xiamen Universities Research Institutions Jointing Enterprise Projects(3502Z20152009)
摘 要:A novel ionic liquid type saponification processing based on quaternary phosphonium type bifunctional IL was developed for yttrium separation from ion-adsorbed rare earth deposit.The extractabilities of([trihexyl(tetradecyl)phosphonium][sec-octylphenoxy acetate]([P_(6,6,6,14)][SOPAA]) were pronouncedly higher than those of sec-octylphenoxy acetic acid(HSOPAA),a mixture of HSOPAA and[P_(6,6,6,14)]Cl for rare earth elements(REEs).The ion association extraction mechanism contributed to avoiding the numerous saponification procedures using alkali and resulting in saponification wastewater.After 13 stages of extraction and 6 stages of scrubbing sections,the Y(Ⅲ) was successfully separated from industrial heavy RREs feed,the purity of Y(Ⅲ) in raffinate was approximately to be 98.9%.Stripping by distilled water was effectively achieved for REEs,which contributed to the decreased consumption of acid to a considerable extent.A novel ionic liquid type saponification processing based on quaternary phosphonium type bifunctional IL was developed for yttrium separation from ion-adsorbed rare earth deposit.The extractabilities of([trihexyl(tetradecyl)phosphonium][sec-octylphenoxy acetate]([P_(6,6,6,14)][SOPAA]) were pronouncedly higher than those of sec-octylphenoxy acetic acid(HSOPAA),a mixture of HSOPAA and[P_(6,6,6,14)]Cl for rare earth elements(REEs).The ion association extraction mechanism contributed to avoiding the numerous saponification procedures using alkali and resulting in saponification wastewater.After 13 stages of extraction and 6 stages of scrubbing sections,the Y(Ⅲ) was successfully separated from industrial heavy RREs feed,the purity of Y(Ⅲ) in raffinate was approximately to be 98.9%.Stripping by distilled water was effectively achieved for REEs,which contributed to the decreased consumption of acid to a considerable extent.
关 键 词:heavy rare earth ionic liquid SAPONIFICATION fractional extraction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...