嵌套抽样算法用于地下水模型评价的算例研究  被引量:4

Application of nested sampling algorithm for assessing the uncertainty in groundwater flow model

在线阅读下载全文

作  者:曹彤彤[1] 曾献奎[1] 吴吉春[1] 

机构地区:[1]南京大学地球科学与工程学院/表生地球化学教育部重点实验室,江苏南京210023

出  处:《水文地质工程地质》2017年第2期69-76,共8页Hydrogeology & Engineering Geology

基  金:国家自然科学基金项目资助(41302181;41172207;51190091);国家重点研发计划"水资源高效开发利用"重点专项项目资助(2016YFC0402802)

摘  要:模型评价(模型选择)是地下水数值模拟不确定分析的重要研究内容,模型边缘似然值是进行模型评价的重要依据。嵌套抽样算法是一种高效的高维积分计算方法,能有效计算复杂模型的边缘似然值。本次研究提出了一种基于Adaptive Metropolis的嵌套抽样算法,通过对两个(线性、非线性)解析函数及一组不同结构的地下水模型边缘似然值的计算,并与大样本条件下算术平均方法的计算结果相对比,验证了该方法对于计算模型边缘似然值的有效性。The model evaluation( model selection) is an important research content of uncertainty analysis of groundwater numerical simulation, and marginal likelihood of a model is an essential basis for model evaluation. Nested sampling algorithm is an efficient high-dimensional integral method,which can effectively calculate the marginal likelihood of complex model. The nested sampling algorithm based on Adaptive Metropolis was proposed in this study,by calculating the marginal likelihoods of two( linear,non-linear)analytic functions and a set of groundwater models with different structures,and compared with the results of the arithmetic average method under the condition of large sample,the validity of the method was verified. The results show that the nested sampling algorithm has high calculation accuracy and computational efficiency,and is an effective model evaluation method.

关 键 词:嵌套抽样算法 模型评价 模型选择 地下水流模型 边缘似然值 

分 类 号:P641.2[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象