Online residual useful life prediction of large-size slewing bearings A data fusion method  被引量:2

Online residual useful life prediction of large-size slewing bearings——A data fusion method

在线阅读下载全文

作  者:封杨 黄筱调 洪荣晶 陈捷 

机构地区:[1]Jiangsu Key Laboratory of Digital Manufacturing for Industrial Equipment and Control Technology(School of Mechanical and Power Engineering),Nanjing Tech University,Nanjing 210009,China

出  处:《Journal of Central South University》2017年第1期114-126,共13页中南大学学报(英文版)

基  金:Projects(51375222,51175242)supported by the National Natural Science Foundation of China

摘  要:To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.To decrease breakdown time and improve machine operation reliability, accurate residual useful life (RUL) prediction has been playing a critical role in condition based monitoring. A data fusion method was proposed to achieve online RUL prediction of slewing bearings, which consisted of a reliability based RUL prediction model and a data driven failure rate (FR) estimation model. Firstly, an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR. Secondly, principal component analysis (PCA) was introduced to process multi-dimensional life-cycle vibration signals, and continuous squared prediction error (CSPE) and its time-domain features were employed as equipment performance degradation features. Afterwards, an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map (SFAM) neural network. Consequently, real-time FR of equipment can be obtained through FR estimation model, and then accurate RUL can be calculated through the RUL prediction model. Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings, and that by combining actual load condition and real-time monitored data, the calculation time is reduced by 87.3% and the accuracy is increased by 0.11%, which provides a potential for online RUL prediction of slewing bearings and other various machineries.

关 键 词:slewing bearing life prediction Weibull distribution failure rate estimation data fusion 

分 类 号:TH133.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象