Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains  

Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains

在线阅读下载全文

作  者:Yuxiang Li Seyeong Song Song Yi Park Jin Young Kim Han Young WOO 

机构地区:[1]Department of Cogno-Mechatronics Engineering, Pusan National University, Miryang 627-706, Republic of Korea [2]Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea [3]Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea

出  处:《Science China Chemistry》2017年第4期528-536,共9页中国科学(化学英文版)

基  金:supported by the National Research Foundation of Korea 2015R1A2A1A15055605,2015M1A2A2057506,2015R1D1A1A09056905,2016M1A2A2940911)

摘  要:Three types of semi-cry stalline photovoltaic polymers were synthesized by incorporating a siloxane-terminated organic/inorganic hybrid side-chain and changing the number of fluorine substituents.A branch point away from a polymer main backbone in the siloxane-containing side-chains and the intra-and/or interchain noncovalent coulombic interactions enhance a chain planarity and facile interchain organization.The resulting polymers formed strongly agglomerated films with high roughness,suggesting strong intermolecular interactions.The optical band gap of ca.1.7 eV was measured for all polymers with a pronounced shoulder peak due to tight π-π stacking.With increasing the fluorine substituents,the frontier energy levels decreased and preferential face-on orientation was observed.The siloxane-terminated side-chains and fluorine substitution promoted the intermolecular packing,showing well resolved lamellar scatterings up to(300) for this series of polymers in the grazing incidence wide angle X-ray scattering measurements.The PPsiDTBT,PPsiDTFBT and PPsiDT2 FBT devices showed a power conversion efficiency of 3.16%,4.40%and 5.65%,respectively,by blending with PC_(71)BM.Langevin-type bimolecular charge recombination was similar for three polymeric solar cells.The main loss in the photocurrent generation for PPsiDTBT:PC_(71)BM was interpreted to originate from the trap assisted charge recombination by measuring light-intensity dependent short-circuit current density(J_(SC)) and open-circuit voltage(V_(Oc)).Our results provide a new insight into the rational selection of solubilizing substituents for optimizing crystalline interchain packing with appropriate miscibility with PC71 BM for further optimizing polymer solar cells.Three types of semi-crystalline photovoltaic polymers were synthesized by incorporating a siloxane-terminated organic/inorganic hybrid side-chain and changing the number of fluorine substituents. A branch point away from a polymer main backbone in the siloxane-containing side-chains and the intra- and/or interchain noncovalent coulombic interactions enhance a chain planarity and facile interchain organization. The resulting polymers formed strongly agglomerated films with high roughness, suggesting strong intermolecular interactions. The optical band gap of ca. 1.7 eV was measured for all polymers with a pronounced shoulder peak due to tight π-π stacking. With increasing the fluorine substituents, the frontier energy levels decreased and preferential face-on orientation was observed. The siloxane-terminated side-chains and fluorine substitution promoted the intermolecular packing, showing well resolved lamellar scatterings up to (300) for this series of polymers in the grazing incidence wide angle X-ray scattering measurements. The PPsiDTBT, PPsiDTFBT and PPsiDT2FBT devices showed a power conversion efficiency of 3.16%, 4.40% and 5.65%, respectively, by blending with PC71BM. Langevin-type bimolecular charge recombination was similar for three polymeric solar cells. The main loss in the photocurrent generation for PPsiDTBT:PC71BM was interpreted to originate from the trap assisted charge recombination by measuring light-intensity dependent short-circuit current density (Jsc) and open-circuit voltage (Voc). Our results provide a new insight into the rational selection of solubilizing substituents for optimizing crystalline interchain packing with appropriate miscibility with PC71BM for further optimizing polymer solar cells.

关 键 词:siloxane side-chain fluorine substitution semi-crystalline charge transport 

分 类 号:O634.41[理学—高分子化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象