一种新的基于Omega-K算法的稀疏场景压缩感知SAR成像方法(英文)  被引量:3

CS-SAR Imaging Method Based on Inverse Omega-K Algorithm

在线阅读下载全文

作  者:胡静秋[1,2] 刘发林[1,2] 周崇彬[1,2] 李博[1,2] 王东进[1,2] 

机构地区:[1]中国科学技术大学电子工程与信息科学系,合肥230027 [2]中国科学院电磁空间信息重点实验室,合肥230027

出  处:《雷达学报(中英文)》2017年第1期25-33,共9页Journal of Radars

基  金:The National Natural Science Foundation of China(61431016)

摘  要:很多文献已经证明压缩感知应用在SAR成像中的有效性。现有的CS-SAR成像算法非常耗时,尤其是对于高分辨率的图像来说更甚。该文针对稀疏场景提出了一种基于omega-K算法,精确且高效的CS-SAR成像算法——CS-OKA算法。我们首先推导出了omega-K算法的逆算子,可不通过发射信号和场景的卷积来直接得到回波信号。在此基础上我们将SAR成像问题建立为一个稀疏优化问题,并用迭代阈值的方法来求解。仿真结果表明,当场景稀疏时该文的方法可以在远低于Nyquist采样率的前提下有效地恢复出原始场景,并且时耗和存储量都显著降低。Compressed Sensing (CS) has been proved to be effective in Synthetic Aperture Radar (SAR) imaging. Previous CS-SAR imaging algorithms are very time consuming, especially for producing high-resolution images. In this study, we propose a new CS-SAR imaging method based on the well-known omega-K algorithm: which is precise and convenient to use in SAR imaging. First, we derive an inverse omega-K algorithm to dir- ectly obtain echoes without any convolution between the transmitted signal and scene. Then, we formulate the SAR imaging problem into a sparse regularization problem and solve it using an iterative thresholding al- gorithm. With our derived inverse omega-K algorithm, we can save significant amounts of computation time and computer memory usage. Simulation results show that the proposed method can effectively recover SAR images with much less data than that required by the Nyquist rate.

关 键 词:合成孔径雷达 压缩感知 Omega-K算法 迭代阈值算法 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象