检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学软件学院,上海201804
出 处:《计算机应用》2017年第4期1065-1070,1134,共7页journal of Computer Applications
摘 要:针对传统的视频情感分析方法计算效率较低且结果不易解释等问题,提出一种基于弹幕文本的视频片段情感识别算法,并以此作为视频片段的推荐依据。首先对基于情感分析的视频片段推荐问题提出形式化描述。其次,通过构建基于隐含狄利克雷分布(LDA)的弹幕词语分类,评估弹幕词语在视频片段中的多维情感向量,同时,根据视频片段之间的情感依赖关系推荐视频的情感片段。所提方法的推荐准确度比基于词频-逆文档频率(TF-IDF)的推荐算法提高了28.9%,相对于传统LDA模型提高了43.8%。实验结果表明所提模型可有效应用于信息繁杂的不规则文本情感分析。To solve the problem that traditional video emotional analysis methods can not work effectively and the results are not easy to explain, a video shot emotional analysis approach based on time-sync comments was proposed, as a basis for the recommendation of video shots. First, a formal description of video shots recommendation based on emotion analysis was studied. Then, after analyzing the classification of time sync comments based on Latent Dirichlet Allocation(LDA) topic model, the emotional vector of the words in time-sync comments were evaluated. Meanwhile, the emotion relationships among the video shots were analyzed for video shots recommendation. The recommendation precision of the proposed method was 28.9% higher than that of the method based on Term Frequency-Inverse Document Frequency(TF-IDF), and 43.8% higher than that of traditional LDA model. The experimental results show that the proposed model is effective in analyzing the complex emotion of different kinds of text information.
关 键 词:视频片段推荐 弹幕情感 主题模型 情感分析 情感向量
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28