Group Classification of Differential-difference Equations: Low-dimensional Lie Algebras  

Group Classification of Differential-difference Equations:Low-dimensional Lie Algebras

在线阅读下载全文

作  者:Shou-feng SHEN Yong-yang JIN 

机构地区:[1]Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China

出  处:《Acta Mathematicae Applicatae Sinica》2017年第2期345-362,共18页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.11001240,11371323)

摘  要:Differential-difference equations of the form un = Fn(t, un-1,Un,Unn+1,Un-1,un,Un+1) are clas- sifted according to their intrinsic Lie point symmetries, equivalence group and some low-dimensional Lie algebras including the Abelian symmetry algebras, nilpotent nonAbelian symmetry algebras, solvable symmetry algebras with nonAbelian nilradicals, solvable symmetry algebras with Abelian nilradicals and nonsolvable symmetry al- gebras. Here Fn is a nonlinear function of its arguments and the dot over u denotes differentiation with respect to t.Differential-difference equations of the form un = Fn(t, un-1,Un,Unn+1,Un-1,un,Un+1) are clas- sifted according to their intrinsic Lie point symmetries, equivalence group and some low-dimensional Lie algebras including the Abelian symmetry algebras, nilpotent nonAbelian symmetry algebras, solvable symmetry algebras with nonAbelian nilradicals, solvable symmetry algebras with Abelian nilradicals and nonsolvable symmetry al- gebras. Here Fn is a nonlinear function of its arguments and the dot over u denotes differentiation with respect to t.

关 键 词:group classification differential-difference equation equivalence group finite-dimensional Lie algebra. 

分 类 号:O152.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象