检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于改革[1] 陈永东[1] 吴晓红[1] YU Gai - ge CHEN Yong - dong WU Xiao - hong(Hefei General Machinery Research Institute,Hefei 230031 ,China)
出 处:《压力容器》2017年第3期24-29,共6页Pressure Vessel Technology
基 金:工信部2014海洋工程装备科研项目(工信部联装[2014]505号);合肥通用机械研究院青年基金项目(2016010471)
摘 要:混合冷剂与海水-混合冷剂换热器现场测量数据表明,混合冷剂在壳程冷凝过程包含入口至相分离点的整体冷凝、部分冷凝、出口处的直接接触冷却。以Aspen Hysys软件建立海水混合冷剂换热器冷凝过程的物理模型,确定整体冷凝与部分冷凝分界点温度。采用Bell-Ghaly法进行混合冷剂冷凝膜传热系数计算,将计算结果与原设计进行对比,有效传热面积和有效长度偏差为0.16%,验证了物理模型和计算方法的有效性,为海水混合冷剂换热器热力设计提供借鉴。The field measurement data of seawater-mixed refrigerant heat exchanger showed condensation process of mixed refrigerant comprised the integral condensation from the inlet to phase separation, differ- ential condensation and the direct contact cooling at the outlet in the shell. To investigate the separation point between integral condensation and differential condensation, a physical model of the condensation process was established in Aspen Hysys. Condensing heat transfer coefficient of mixed refrigerant was cal- culated using the Bell-Ghaly method. The results compared with the original design showed that the devia- tion of the effective heat transfer area and the effective length were both only 0.16%. The validity of the physical model and calculation method is verified,which can provide reference for the thermodynamic de- sign of seawater mixed refrigerant heat exchanger.
关 键 词:混合冷剂 Bell—Ghaly方法 整体冷凝 部分冷凝
分 类 号:TH49[机械工程—机械制造及自动化] TQ053.2[化学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225