Asplund空间中方向上导数和序列法紧性质分析法则  

Calculus of Normal Cones and Coderivatives Under the Assumption of Directional Inner Semicompactness in Asplund Spaces

在线阅读下载全文

作  者:龙莆均[1] 杨新民[2] 王炳武[3] 

机构地区:[1]内蒙古大学数学科学学院,呼和浩特010021 [2]重庆师范大学数学科学学院,重庆400047 [3]东密歇根大学数学学院,密歇根美国伊普西兰蒂48197

出  处:《应用数学和力学》2017年第4期457-468,共12页Applied Mathematics and Mechanics

基  金:国家自然科学基金(重点项目)(11431004)~~

摘  要:研究了广义微分结构中的集合方向Mordukhovich法锥、集值映射的方向上导数,以及集合和集值映射的方向序列法紧性的分析法则.基于集合方向Mordukhovich法锥的交集法则,在方向内半紧性假设下,建立了集合的方向Mordukhovich法锥、集值映射的方向上导数的分析法则.此外,借助Asplund乘积空间中集合的方向序列法紧性的交集法则,在方向内半紧性和相应的规范条件下,建立了集合和集值映射的(部分)方向序列法紧性的加法、逆像、复合等法则.The directional Mordukhovich normal cones of sets,directional Mordukhovich coderivatives of set-valued mapping,and directional sequential normal compactness of sets and set-valued mapping in the framework of generalized differentiation were studied. Based on the intersection rule for directional Mordukhovich normal cones of sets,the calculus rules on directional Mordukhovich normal cones of sets and directional Mordukhovich coderivatives of set-valued mapping were established under some directional inner semicompactness assumptions. Furthermore,in virtue of the intersection rule for directional sequential normal compactness of sets,the sum rule,inverse mapping rule,and composition rule for directional( partial) sequential normal compactness of sets and set-valued mapping were presented under some directional inner semicompactness assumptions and suitable qualification conditions.

关 键 词:方向内半紧性 方向Mordukhovich法锥 方向Mordukhovich上导数 方向(部分)序列法紧性 

分 类 号:O221.6[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象