检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:桂良明[1] 夏永俊[1] 李海山[1] 谭鹏[2] 张尚志[2] 张成[2]
机构地区:[1]国网江西省电力科学研究院 [2]煤燃烧国家重点实验室(华中科技大学)
出 处:《电站系统工程》2017年第2期5-8,共4页Power System Engineering
摘 要:针对某超超临界660 MW机组锅炉,建立了基于随机森林(RF)和梯度提升决策树(GBDT)算法的氮氧化物(NO_x)排放预测模型。从电厂SIS系统筛选得到历史运行数据中的稳态工况点,利用RF模型对数据特征进行筛选,并以选中特征作为输入变量建立基于GBDT的NO_x排放预测模型。与支持向量机(SVM)、RF等模型的对比表明基于RF的特征选择能提升模型性能;较于其他模型,RF-GBDT具有最高的NO_x排放预测精度。A nitric oxides(NO_x) emissions model was established by combining random forest(RF) algorithm and gradient boost decision tree(GBDT) algorithm for a 660 MW ultra-supercritical boiler. Data sieving was employed on operational records provided by Supervisory Information System(SIS) and steady-state records were get. The records, whose dimension was reduced with the feature ordering function of RF model then, were used as inputs to build the NO_xemissions prediction model with GBDT algorithm. Several other models were built to make a comparison. The test result proves that feature selection basing on RF algorithm can improve predictive accuracy of models. The RF-GBDT model is more outstanding in prediction effect comparing with other models.
关 键 词:NOx预测 随机森林(RF) 梯度提升决策树(GBDT) 燃煤锅炉
分 类 号:TK223.23[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.192